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Abstract 

The distribution of organisms in space has important consequences for the function 
and structure of ecological systems. Such distributions are often referred to as patchy, 
and a patch-based approach to modeling ecosystem dynamics has become a major 
research focus. These models have been used to explore a wide range of questions 
concerning population, metapopulation, community, and landscape ecology, in both 
terrestrial and aquatic systems. 

In this dissertation I develop and analyze a series of spatial models to study the dy- 
namics of metapopulations and marine benthic communities in patchy environments. 
All the models have the form of a discrete-time Markov chain, and assume that the 
landscape is composed of discrete patches, each of which is in one of a number of 
possible states. The state of a patch is determined by the presence of an individual 
of a given species, a local population, or a group of species, depending on the spatial 
scale of the model. 

The research is organized into two main parts as follows. In the first part, I 
present an analysis of the effects of habitat destruction on metapopulation persistence. 
Theoretical studies have already shown that a metapopulation goes extinct when the 
fraction of suitable patches in the landscape falls below a critical threshold (the so 
called extinction threshold). This result has become a paradigm in conservation 
biology and several models have been developed to calculate extinction thresholds 
for endangered species. These models, however, generally do not take into account 
the spatial arrangement of habitat destruction, or the actual size of the landscape. 
To investigate how the spatial structure of habitat destruction affects persistence, 
I compare the behavior of two models: a spatially implicit patch-occupancy model 
(which recreates the extinction patterns found in other models) and a spatially explicit 
cellular automaton (CA) model. In the CA, I use fractal arrangements of suitable 
and unsuitable patches to simulate habitat destruction and show that the extinction 
threshold depends on the fractal dimension of the landscape.   To investigate how 



habitat destruction affects persistence in finite landscapes , I develop and analyze 
a chain-binomial metapopulation (CBM) model. This model predicts the expected 
extinction time of a metapopulation as a function of the number of patches in the 
landscape and the number of those patches that are suitable for the population. 
The CBM model shows that the expected time to extinction decreases greater than 
exponentially as suitable patches are destroyed. I also describe a statistical method 
for estimating parameters for the CBM model in order to evaluate metapopulation 
viability in real landscapes. 

In the second part, I develop and analyze a series of Markov chain models for 
a rocky subtidal community in the Gulf of Maine. Data for the model comes from 
ten permanent quadrats (located on Ammen Rock Pinnacle at 30 meters depth) 
monitored over an 8-year period (1986-1994). I first parameterize a linear (ho- 
mogenous) Markov chain model from the data set and analyze it using an array of 
novel techniques, including a compression algorithm to classify species into functional 
groups, a set of measures from stochastic process theory to characterize successional 
patterns, sensitivity analyses to predict how changes in various ecological processes 
effect community composition, and a method for simulating species removal to iden- 
tify keystone species. I then explore the effects of time and space on successional 
patterns using log-linear analysis, and show that transition probabilities vary sig- 
nificantly across small spatial scales and over yearly time intervals. I examine the 
implications of these findings for predicting equilibrium species abundances and for 
characterizing the transient dynamics of the community. Finally, I develop a non- 
linear Markov chain for the rocky subtidal community. The model is parameterized 
using maximum likelihood methods to estimate density-dependent transition prob- 
abilities. I analyze the best fitting models to study the effects of nonlinear species 
interactions on community dynamics, and to identify multiple stable states in the 
subtidal system. 

Dissertation Advisor: Hal Caswell 
Title: Senior Scientist, Woods Hole Oceanographic Institution 
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Chapter 1 

Introduction 

Here is the world, sound as a nut, perfect, not the smallest piece of chaos 

left, never a stitch nor an end, not a mark of haste, or botching, or second 

thought; but the theory of the world is a thing of shreds and patches. 

-Ralph Waldo Emerson 

A characteristic feature of the spatial distribution of most species, across a range 

of spatial scales, is patchiness (Taylor 1961, Taylor and Taylor 1969; Hanski 1994; 

Wiens 1997). Patchiness refers to the non-homogenous distribution of organisms (and 

their resources) in space and time (Hanski 1999). At smaller spatial scales, patchiness 

is generally a consequence of neighborhood effects; i.e., organisms are more likely to 

interact with their neighbors than with more distant organisms. This is especially 

true for benthic invertebrates such as corals, sponges, bryozoans, and other sessile 

marine organisms (Tanner et al. 1994, Sebens 1986, Witman and Dayton 2000). At 

larger spatial scales, patchiness arises due to dispersal and recruitment patterns (e.g. 

Horn and MacArthur 1972, Levin 1974, Levin et at. 1984, Paine 1984, Cohen and 

Levin 1991, Caswell and Cohen 1991a,b, Hanski 1999), physical disturbance (Dayton 

et al 1970, Witman 1987, Witman and Dayton 2000), and variations in the quality 

of the environment (Kareiva 1990; Levin 1992; Tilman and Kareiva 1997). Because 

the absence of a species from a locality may reflect dispersal limitations, unsuitable 
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environmental conditions, or competitive exclusion through local biotic interactions, 

patchy distributions are an emergent property of ecological processes acting over a 

wide range of spatial scales (e.g., Horn 1971, Hastings 1980, Connell 1985, Games 

and Roughgarden 1985, Menge and Sutherland 1987, Grosberg and Levitan 1992, 

Connolly and Roughgarden 1998). 

The importance of spatial patchiness is increasingly recognized as having impor- 

tant consequences for the function and structure of terrestrial and aquatic systems 

(Levin and Paine 1974; Steel 1978; Pickett and White 1985; Caswell and Cohen 

1991a,b; Weins et. al. 1993; Wu and Levin 1994; Wu and Loucks 1995; Hanski 

1999). A patch is generally defined in terms of a spatial unit within a landscape that 

is different in some physical or biological aspect from its immediate surroundings 

(Kotliar and Weins 1990). Definitions of a patch include a bounded region within a 

homogenous background consisting of either single or multiple biological components 

(Levins and Paine 1974); a spatial location within an environment where the abun- 

dance of a resource, a population, or a community of organisms is high (Roughgarden 

1977); a location containing an aggregated collection of prey species within which a 

predator forages (Stephens and Kerbs 1986); territorial sites of individuals (Lande 

1987); discrete regions in a landscape containing local populations connected by dis- 

persal (Hanski 1994); and any division or heterogeneity in the abundance of resources 

(Antolin and Addicott 1991). Thus what is considered a patch depends both on the 

spatial and temporal scales of interest and the fundamental units of the system being 

studied (e.g., vertical nutrient distributions at the sediment water interface, territo- 

ries of spotted owls in fragmented forests, aggregates of benthic organisms, the global 

distribution of plankton). Spatial patchiness at any scale, however, can be defined 

in terms of both the composition of patches (i.e. types of patches and their relative 

abundance) and the spatial distribution of patches (i.e. patch size, shape, and their 

location in space). 

A patch-based approach to studying ecosystem dynamics has become a major 

14 



research focus, and several theoretical methods have been developed to model patch 

dynamics (Levins 1969; Lande 1989; Caswell and Cohen 1991a,b, 1995; Levin 1992; 

Weins et. al. 1993; Hanski 1994; Wu and Loucks 1995; Barradas et al. 1996; 

Caswell and Etter 1999). They include metapopulation models (Levin 1969, Nee 

and May 1992; Hanski 1999), patch-occupancy models (Caswell and Cohen 1991a,b, 

1995; Barradas et al. 1996), reaction-diffusion networks (Karlin and McGregor 1972; 

Levin 1974; Hastings 1983), Markov chains (Horn 1975; Usher 1979; Tanner et al. 

1994,1996), coupled map lattices (Comins et al. 1992; Sole and Vails 1991; Bevers 

and Flather 1999), interacting particle systems (Mackay and Jan 1994; Sutherland 

and Jacobs 1994; Durrett and Levin 1994), and cellular automata (Sivlertown et al. 

1992; Caswell and Etter 1993, 1999; Molofsky 1994; Dythan 1995; Bascompte and 

Sole 1996). These modeling approaches have been developed to answer a wide range 

of questions concerning population ecology, metapopulation dynamics, community 

ecology, biogeography, and landscape ecology (Wu and Loucks 1995). 

In this dissertation I develop a series of models to study the effects of habitat 

destruction on metapopulation persistence, and to analyze the dynamics of marine 

benthic communities. The general methods I use to model these systems all have 

the form of a discrete-time Markov chain. The models assume that the landscape 

is composed of discrete patches, each of which is in one of a number of possible 

states. The state of a patch is determined by the presence of an individual of a given 

species, a local population, or a group of species, depending on the spatial scale of 

the model. Before describing the specific research presented in the coming chapters, I 

briefly review the Markov chain approach used to model biological systems in patchy 

environments. 
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1.1    Characterizing patch dynamics:   A discrete- 

time Markov chain approach 

Consider a landscape composed of patches, each of which is in one of N possible states. 

Let Xi(t) be the proportion of patches in state i at time t. The temporal dynamics of 

the patch states in the landscape can be modeled as a system of difference equations 

Xi(t+1)     =    fi(xi(t),X-2{t),...,XN(t)) 

x2(t + l)    =    f2(Xi{t),X2(t),...,XN{t)) 

; (l.i) 

xN(t + l)   =   /tf(zi(t),s2(t),---,Ztf(*)) 

where the functions fi specify the change in the proportion of patches in state i in the 

interval (t,t+l). If we define a vector x(t) whose ith element is Xj(t), then equation 

1.1 can be written in matrix form 

x(t+l)=Ax(i), (1.2) 

where A is a Markov chain transition matrix whose (i,j) element (ay) gives the prob- 

ability that a patch in state j changes to state i in one time interval. The matrix A 

is nonnegative (all a^ > 0) and has the property that each column sums to 1 (i.e. A 

is column-stochastic). 

The set of possible state transitions for a given biological system can be depicted 

graphically using a transition diagram (Caswell and Cohen 1991a,b). Figure 1.1 shows 

an example of a transition diagram for a landscape in which there are four possible 

patch states. The arrows show the possible transitions among the patch states, while 

the expressions above the arrows are the probabilities that the transitions occur in the 

time interval (t, t+ 1). Transition probabilities can be constant (e.g., 8), a function 
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of time (e.g., y(t)), and/or dependent on the frequency of patches in a particular 

state (e.g., Cifa)). To construct a transition matrix from the diagram simply set the 

elements aij equal to the expression on the arrow going from Xj to Xt. The transition 

matrix corresponding to Figure 1.1 is 

'l-Ci(x2) 8 

Ci(xO {1 - C2(*S)}{1 - 5} 

0 C2(x,){l-5} 

\        0 0 

0 a    \ 

0 0 

1 - 7(t) 0 

7(t) 1-a) 

(1.3) 

1.2    Thesis structure 

The research presented in the following chapters focuses on the use of Markov chain 

models to investigate patch dynamics at the level of the metapopulation and at the 

scale of the community. While these models are applicable to many groups of organ- 

isms, they are primarily motivated by marine benthic systems. 

The models of metapopulation dynamics focus on the effects of habitat destruction 

on persistence. Theoretical models have shown that a metapopulation cannot persist 

when the fraction of suitable patches in the landscape falls below a critical threshold 

(Lande 1987; Nee and May 1992; Lamerson et al. 1994; Kareiva and Wennergren 

1995; Noon and McKelvey 1996). Consequently, identifying extinction thresholds for 

endangered species has become an important paradigm in conservation biology. These 

studies, however, have mostly ignored two fundamental factors affecting metapopu- 

lation persistence: (1). the spatial arrangement of habitat destruction, and (2). the 

actual size of the patch network. In the first part of the thesis (Chapters 2 and 

3) I develop and analyze a set of models that examine how changes in the habitat 

destruction pattern and changes in the size of the patch network affect predictions 

about metapopulation persistence and extinction thresholds in fragmented habitats. 

17 



1-C!(x2) (l-C2(X3)Xl-5) 

C2(X3)(l-5) 

l-a l - Y(t) 

Figure 1.1: Transition diagram for a four state Markov chain model. Each circle 
represents a possible state of a patch, and in this example the states and are identified 
as 1 2, 3, and 4. The state of a patch is defined by the presence and/or absence of a 
particular species or species group. For instance, if the diagram were for a predator- 
prey model then 1 = empty patches, 2 = prey only, 3 = prey and predators, and 4 = 
predators only. The arrows connecting the circles represent possible state transitions, 
which the coefficients above the arrows are the transition probabilities during the 
time period (t, t + 1). 

18 



In second part of the thesis (Chapters 4, 5 and 6), I focus on the construction and 

analysis of a series of Markov chain models for a rocky subtidal community in the Gulf 

of Maine. The purpose of this research is four-fold. First, it extends the use of Markov 

chain models as a tool for marine community ecology. Second, it characterizes how 

temporal and spatial variation in successional processes affects species abundances 

and community dynamics. Third, it provides the first evaluation of nonlinear Markov 

models developed from empirical data. Finally, it increases our understanding of the 

ecology of sessile invertebrate communities in the rocky subtidal zone, a vast habitat 

that faces an increasing pace of anthropomorphic disturbance. 

1.2.1    Chapter details 

The chapters in this thesis are organized as follows: 

• In chapter 2 I explore the effect of habitat fragmentation when the fragmenta- 

tion follows a fractal pattern. The goals are to determine the habitat fragmen- 

tation pattern affects metapopulation abundance and the amount of habitat 

destruction the metapopulation can tolerate before it goes extinct. To study 

these effects, I compare the behavior of two models: a spatially implicit patch- 

occupancy (PO) model and a spatially explicit cellular automaton (CA) model. 

The PO model is a nonlinear Markov chain that describes patch dynamics 

within a fragmented habitat, in which patches are either suitable (i.e. can 

support local population growth) or unsuitable. Suitable patches are either 

occupied or unoccupied, and change state depending on rates of colonization 

and local extinction. The PO model recreates the extinction patterns found in 

other metapopulation models (e.g., Lande 1987, Hanski 1999). The advantage 

of the PO model is that it can be directly translated into a stochastic CA model 

(Caswell and Etter 1993, 1999), in which the state and the location of patches 

are followed explicitly through time. By using fractal arrangements of suitable 
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and unsuitable patches to simulate habitat fragmentation, I show that landscape 

structure plays a vital role in determining the effects of habitat destruction on 

persistence. 

• In chapter 3 I present a stochastic model for metapopulations in landscapes 

with a finite but arbitrary number of patches. The model, similar in form to 

chain-binomial epidemic models, is an absorbing Markov chain that describes 

the changes in the number of occupied patches as a sequence of binomial prob- 

abilities. It predicts the quasi-equilibrium distribution of occupied patches, the 

expected extinction time, and the probability of persistence to a given age as 

a function of the number of patches in the landscape and the number of those 

patches that are suitable for the population. In this chapter I also describe a sta- 

tistical method for estimating model parameters from time series data in order 

to evaluate metapopulation viability in real landscapes. An example is pre- 

sented using published data on the Glanville fritillary butterfly Meltiaea cinxia 

and its speciahst parasitoid Cotesia melitaearum in which the expected extinc- 

tion time of M. cinxia is calculated as a function of the frequency of parasite 

outbreaks. 

• In chapter 4 I describe the development of a homogenous Markov chain model 

for a rocky subtidal community in the Gulf of Maine. Data for the model comes 

from ten permanent quadrats (located on Ammen Rock Pinnacle at 30 meters 

depth) monitored over an 8-year period (1986-1994). I analyze this model using 

an array of novel techniques, including a compression algorithm for transition 

matrices to classify species into functional groups, a set of tools from stochastic 

process theory to characterize successional patterns, and sensitivity analyses to 

quantify the importance of various ecological processes for maintaining species 

diversity. 

I also present methods for quantifying the effects of species removal on species 

20 



diversity and community resilience. These methods are Markov chain analogs 

to species removal experiments conducted in natural systems. They provide a 

theoretical means for classifying the relative importance of individual species to 

the structure and stability of a community when experimental manipulations 

are not possible. 

• In chapter 5 I explore the effects of time and space on successional patterns in 

a rocky subtidal community. Using log-linear analysis, I show that transition 

probabilities vary significantly across small spatial scales and over yearly time 

intervals. The implications of these findings for predicting equilibrium species 

abundances and understanding biological processes that drive transient dynam- 

ics are discussed.. I also use a set of methods introduced by Cohen et al. (1998) 

to characterize regional variability in the temporal and spatial distribution of 

species. This analysis is conducted to contrast how regional variations in the 

distribution of species compares with local variations in successional patterns 

predicted by log-linear analysis. 

• In chapter 6 I describe the development of a nonlinear Markov chain of a rocky 

subtidal community. The model is parameterized using maximum likelihood 

methods to estimate density-dependent transition probabilities from the Gulf 

of Maine data set. I analyze the best fitting Markov chains to study the effects 

of species interactions on community dynamics, to characterize the sensitivity 

of community dynamics to initial conditions, and to identify multiple stable 

states in the subtidal system. I also examine how changes in the strength of 

interactions among species affect the behavior of the model. 

• Finally, Chapter 7 summarizes the main results as they relate to the general 

theme of this thesis, and proposes some further research directions. 
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Chapter 2 

Habitat fragmentation and 
extinction thresholds on fractal 
landscapes 

The earth belongs to the living, not to the dead. 

-Thomas Jefferson 

2.1    Introduction 

A species living in a fragmented landscape, only part of which is suitable for oc- 

cupancy, faces two challenges for persistence. It must balance mortality and repro- 

duction within a patch to maintain itself locally, and must locate those parts of the 

landscape that are suitable. As landscapes become more fragmented due to human 

disturbance, the second challenge becomes a critical conservation and management 

issue. 

Habitat fragmentation is important because there exists a threshold level of suit- 

able habitat, below which the population goes extinct, even though its vital rates 

are capable of supporting positive population growth in the suitable areas. This was 

first shown by Lande (1987) in an analysis of the Northern Spotted Owl, which is 
1This chapter was published in Ecology Letters (1999) 2:121-127. 
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endangered because logging has fragmented its old-growth habitat. This result has 

become a paradigm in conservation biology (e.g. McKelvey et al. 1993; Lamberson 

et al. 1992). 

Lande's model is an ingenious application of demographic theory, but does not 

directly describe the dynamics of occupied and unoccupied territories. He incorpo- 

rated the fraction of suitable territories as a factor in a survivorship function, and 

calculated the net reproductive rate by substituting this survivorship function into 

Lotka's integral equation of population growth. By setting the net reproductive rate 

to 1, he solved for the minimum fraction of suitable habitat permitting population 

growth. 

An alternative approach is to use metapopulation (Levins 1969) or patch-occupancy 

(Caswell and Cohen 1991a, b, 1995) models to investigate the affects of habitat frag- 

mentation. Such models describe the landscape as a mosaic of discrete patches and 

focus on the balance between colonization and local extinction. Several single-species 

metapopulation models have shown that a population cannot persist when the fraction 

of suitable patches or territories in the landscape falls below a critical threshold (Nee 

and May 1992; Lamerson and Carroll 1993; Kareiva and Wennergren 1995; Noon and 

McKelvey 1996). Nee and May (1992) extended this approach to a two species com- 

petition model and found that habitat destruction decreased the frequency of patches 

occupied by the superior competitor, but surprisingly increased the frequency of the 

inferior competitor. Multi-species competition models (Tillman et al. 1994; Stone 

1995) have shown that the most vulnerable species to habitat loss are the top com- 

petitors (given that they have lower colonization rates), and that species extinction 

may occur decades after suitable territory has been destroyed (the so called extinction 

debt; Tillman et al. 1994). 

Because these models assume that every patch interacts equally with every other 

patch, the explicit arrangement of patches has no effect on the results, and such 

models tell us nothing about how the spatial arrangement of habitat destruction 
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effects a population. These effects can be important (Doak et al. 1992; Mckelvey et 

ai. 1993; Bascompte and Sole 1996). 

In this paper, we derive a discrete time patch-occupancy model (PO model) which 

captures the essential features of Lande's model and the other single-species models in 

the literature. We then embed this model in an explicit spatial arrangement of habitat 

destruction by transforming it into a stochastic cellular automata model (Caswell and 

Etter 1992, 1999). We compare the results of the two models to study the effects of 

the spatial arrangement of habitat destruction. 

2.1.1    Lande's Model 

Suppose that the landscape is divided into patches the size of an individual territory, 

and that a proportion h of these are suitable and a proportion u are unsuitable. Let 

p denote the proportion of the suitable territories that are occupied. Suppose that 

individuals with a suitable territory have a survivorship function l'(x) and maternity 

function b(x). At some age before maturity, juveniles inhabit their parents territory 

with probability £ or disperse in search of suitable territory. A juvenile can search as 

many as m potential territories before dying. The probability of finding an unoccupied 

and suitable territory is 

1-(1- e){u + ph)m (2.1) 

Since dispersal happens before maturity, the survivorship function for ages beyond 

maturity is simply l'(x) multiplied by (2.1). Thus the net reproductive rate is 

Ro = 1 - (1 - e)(u + ph)m /    l'(x)b(x)dx (2.2) 
Ja 

where a is the age of maturity. Denoting the integral term by R^ (i.e. the net 

reproduction rate conditional on finding a territory), the condition for equilibrium is 

l-(l-£)(u+p/i)mi^ = l (2.3) 
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The only variable in this equation is p; the value which satisfies it is the equilibrium 

habitat occupancy 

P 

Where 

I _ kzk 
h (2.4) 

0 

(2.5) 

Since p* = k when h = 1, Lande identifies k as the demographic potential of the 

population. 

Plotting p* as a function of h for different values of k reveals a clear extinction 

threshold; if h is too small the population goes extinct. 

2.1.2    Metapopulation Models 

Levins (1969) envisioned metapopulation dynamics as a tradeoff between the colo- 

nization rate C of empty patches and the local extinction rate m of occupied patches. 

If we let x denote the fraction of empty patches, then the instantaneous change in 

the proportion of occupied patches is 

(IT 
=■ = Cx{\ -x)-mx (2.6) 

The non-trivial steady state solution is x* = 1 — *£, so the population persists only if 

C > m. Note that this solution implies that for biologically realistic values of C and 

m the metapopulation is unable to occupied all available patches. 

Habitat destruction can be incorporated into (2.6) by introducing a term D de- 

noting the proportion of patches that have been destroyed. In a landscape where not 

all of the habitat is suitable, the change in the frequency of occupied patches becomes 

rjnr 
— = Cx{\ -D-x)-mx (2.7) 
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where the non-trivial solution is now x* = 1 — D — *£. Thus for the population to 

persist, D must be less than the critical destruction level Dc = 1 — *£. Equation 

(2.7) can be solved for the proportion of suitable territories occupied by making the 

substitutions h = 1 — D and p = |, yielding 

^ = Chp(l-p)-mp. (2.8) 

At equilibrium p* = 1 — jjg, and the population goes extinct when h<^. 

2.2    The Patch-Occupancy Model 

Lande's model takes a population-centered view of the landscape, and calculates the 

fraction of occupied territory from consideration of the survival and reproduction 

of individuals. Metapopulation models take a patch-centered view where occupied 

and unoccupied patches change states in continuous time, depending on colonization 

and mortality rates. A patch-occupancy model also takes a patch-centered view, 

however, patches are now described as state variables which change states according 

to a discrete time nonlinear Markov process. 

Consider a landscape composed of patches, each of which can be in one of three 

states 

State Description 

Suitable habitat; unoccupied 

Suitable habitat; occupied 

Unsuitable habitat 

Denote the number of patches in state i by n,, and the proportion of patches in 

state i by Xj, for i = 1,2,3. In the model, the proportion h of suitable habitat is 

constant; h = X\ + X2- We denote the proportion of suitable patches that are actually 

occupied by p = x^jh. This is the variable of interest in the conservation context. 
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No one expects to find owls in parking lots; what is important is how much of their 

remaining potential habitat is actually occupied. 

We will speak of the colonization, growth, and local extinction of populations 

within patches, but the model can also be interpreted in terms of the immigration 

and mortality of individuals on territories. 

A population in an occupied territory goes extinct in a unit of time with proba- 

bility 5, and survives with probability 1 — 5 (Figure 2.1). Local extinction produces 

an empty patch. The colonization of such a patch is described by a Poisson process. 

Colonists arrive at the empty patch from other occupied patches in the system. Thus 

the probability that an unoccupied territory is colonized is 

C   =   P[at least 1 colonist arrives] (2.9) 

=   l-e~M 

where M is the mean number of colonist arriving at a territory. That number is given 

as 

M   =    **  (2.10) 
ni+n2+ n3 

=   bx 2 

where b is the number of dispersing propagules produced by each of the n2 occupied 

patches, and rii + n2 + n,3 is the number of patches over which those propagules are 

distributed. Thus b can be interpreted as a measure of propagule production; we will 

call it the dispersal parameter. In terms of 6, the colonization probability can be 

written as 

C = 1 - e~bX2 (2.11) 
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1-C 1-8 

Suitable habitat; unoccupied Suitable habitat; occupied 

Unsuitable habitat 

Figure 2.1: Transition diagram for the patch-occupancy model. The circles represent 
the different possible states of a patch, and the arrows show the possible state transi- 
tions. C is the probability that a suitable unoccupied patch is colonized and 5 is the 
probability that occupied patch goes extinct. See text for details. 
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The dynamics of the system axe given by 

x1{t + l)   =   {\ - C)xx{t) + 8x2{t) 

x2{t + l)   =   Cxi(t) + (1 - 6)x2(t) (2.12) 

x3(t + l)   =   x3{t) 

Because the proportion of suitable patches, h, is constant and equals x\ + x2, (2.12) 

can be reduced to a single equation describing the dynamics of occupied patches 

x2(t + 1) = C(h - x2(t)) + (1 - S)x2{t) (2.13) 

where C=l-e-6l2(t). 

Equation (2.13) can be rewritten in terms of the occupancy p of suitable patches 

as 

p(t + 1) = (l - e~hbpV) (1 - p(t)) + (1 - 5)p(t). (2.14) 

As /i decreases the colonization rate decreases and fewer empty patches are colonized 

during each time step. 

2.2.1    Stability Analysis and Extinction Threshold 

Equation (2.14) has two fixed points:  a trivial equilibrium at p = 0 and another 

satisfying 
1 — t~hhP 

f=l-e-^ + 5 (2-15) 

The species can invade the system when the trivial equilibrium is unstable. Denote 

the right hand side of equation (2.14) by f(p,h). The boundary between stability 

and instability of the trivial equilibrium is given by 

df(p,h) 

dp 
= 1. (2.16) 

p=0 
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The value of h satisfying this equation is hc, the critical proportion of suitable habitat. 

It satisfies 

' (1 + hcb) -6=1 (2.17) 

the solution to which is 

hc=- (2.18) 

Populations with a higher dispersal rate or a smaller extinction rate can tolerate more 

habitat destruction. 

A transcritical bifurcation occurs at h = hc, at which the trivial equilibrium (p = 

0) and the nontrivial equilibrium (p) collide and exchange stability. The conditions 

for such a bifurcation are (Wiggins 1990) 

|{   =   bpe-^(l-p) = 0 (2.19) 

df      :   e-
hbP[b(l + p(hbp - hb - 2))] ^ 0 (2.20) 

dpdh 

H   =   hbe-h^[hb{p-l)-2]^0 (2.21) 

where all the derivatives are evaluated at p = 0 and h = hc.  It is easy to confirm 

upon substitution that all three conditions are met. 

The nontrivial equilibrium p is always stable when it exists. To see this, note that 

the second derivative (2.21) is negative for 0 < p < 1, so the one-dimensional map 

of equation (2.14) is concave downward (Fig. 2.2). Since the map is always concave 

downward, p can lose stability only by a flip bifurcation, i.e. when df/dp < —1. 

However, this would require that 

^<I + {KI-PY (2'22) 

But the left side of (2.22) is always positive and the right side is always negative. 

Hence, the inequality never holds, and flip bifurcations are impossible. 
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-0.2      0.0 0.2 0.4 

P(t) 

0.6       0.8 1.0 

Figure 2.2: A one-dimensional map for equation (2.14), where the solid line in each 
plot depicts p(t + 1) as a function of p(t). The top curve shows the case for h> hc 

while the bottom curve is for h < hc. Fixed points are located at the intersection of 
the curves with the 45° dashed line (point at which p(t + 1) = p(t)). 
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Suitable habitat (h) 

0.5 1.0 

Figure 2.3: Equilibrium frequency of occupied patches, p, as a function of h for (a.) 
the PO model, and (b.) the CA (dashed line) when patches are randomly destroyed. 
CA results are averages from five replicate simulations. The error bars represent 95% 
confidence intervals. The curves are for b = 0.2 and 5 = 0.01, 0.05, 0.10, and 0.15. 

Thus, the long-term dynamics of the model are limited to either extinction (when 

h < hc), or convergence to a stable equihbrium (when h > hc). The equilibrium 

frequency, p, of occupied patches can be found by solving (2.15) numerically. Figure 

2.3a shows p as a function of h; the pattern agrees with the results of Lande's model 

for the Northern Spotted Owl (Lande 1988). 

2.3    Adding Landscape Structure 

To study the influence of landscape structure on dynamics we converted the patch 

occupancy model into a cellular automaton (CA) (see Caswell and Etter 1993, 1999, 

Etter and Caswell 1994, for the relationship between patch-occupancy and CA models 

of this sort). In the CA, both the state and the location of patches are followed 

explicitly through time. Each patch evolves in time following (2.12), but interacts 

only with patches in a local neighborhood. 
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We simulated the CA on a 256 x 256 grid with periodic boundary conditions. Each 

patch is in one of three states; unoccupied but suitable for colonization, occupied, 

or unsuitable. Patches change state according to a nonlinear Markov chain whose 

transition matrix is 

A = 

^ \-C      8      0^ 

C      1-5   0 

\     ° °      lJ 

(2.23) 

The elements of A correspond to the transition probabilities in Figure 2.1. The 

colonization probability C is given by 

C = l-exp{-bx[N)) (2.24) 

where x2 is the frequency of occupied patches in the neighborhood of the patch under 

consideration. We report results here for a 7x 7 neighborhood, which is equivalent to a 

dispersal radius of 3 patches in all directions from an occupied patch. The parameters 

in the CA model are the same as those in the PO model: S is the extinction probability 

of a local population within a patch, and d is the dispersal parameter. 

2.3.1    Fractal Landscapes 

In a spatially explicit model the pattern of habitat fragmentation may also affect 

population dynamics. The simplest pattern is a random uncorrelated distribution of 

suitable and unsuitable patches. Real landscapes, however, are often fractal, show- 

ing patterns of variance or clumping at different spatial scales (Mandelbrot 1982; 

Krummel et. al. 1987; Milne 1988; Sole and Manrubia 1995). 

We created landscapes with fractal patterns of habitat destruction from fractal 

surfaces whose contours are the traces of fractal Brownian motion. If V (t) represents 

the value of a randomly moving trace at time t, then the change, AV = V(t2) — V(t\), 
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over the increment At = t2 — h, scales as 

AV oc AtH (2.25) 

where the ruggedness of the trace is controlled by the hurst exponent H (Saupe 

1988). In 3-dimensional space the path of the trajectory produces a fractal surface. 

These surfaces are now familiar from computer graphics books and movies and appear 

remarkably similar to real landscape surfaces (Peitgen and Saupe 1988"). 

The intersection of the surface with a horizontal plane ("flooding" the landscape 

to a specific elevation) creates two sets of patches: those above the plane and those 

below it. By defining the patches below the plane as unsuitable and then progressively 

flooding the landscape to higher elevations, we create fragmented habitats in which 

the frequency of suitable patches declines from 1 to 0, and in which the suitable 

patches are self-similar throughout. 

The edges of these patches have a fractal dimension D given by 

D = 2-H (2.26) 

where 1 < D < 2. As D increases, fragment edges become increasingly rough, and 

suitable patches tend to be isolated in small clusters. Their connectivity is minimized 

when D = 2. On the other hand, as D —+ 1, fragment edges become smoother, and 

suitable patches are more likely to be located within large contiguous fragments than 

in small isolated clusters. 

We used the midpoint displacement algorithm published in Saupe (1988) to pro- 

duce random surfaces with D = 1.9, 1.5, and 1.1. We generated five replicate random 

landscapes for each fractal dimension. Examples are shown in Figure 2.4 with 50% 

suitable habitat. An uncorrelated random landscape, created by allocating suitable 

and unsuitable patches randomly and independently, is also shown for comparison 

(Fig. 2.4d). 
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d. Random 
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Figure 2.4: Three Browian fractal landscapes (a-c) produced using the midpoint 
displacement algorithm (Barnsley et al). Landscapes are depicted with 50% suitable 
habitat. White corresponds to regions consisting of suitable patches. Black areas 
represent destroyed patches. A landscape in which 50% of the patches were randomly 
destroyed (d) is included for comparison. The fractal landscapes were produced using 
the same integer value to seed the random number generator. 
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2.4 Simulation Methods 

Before the start of each simulation, a' proportion of patches in the landscape were 

designated as unsuitable. The location of unsuitable patches were assigned either 

randomly and independently (Fig. 2.4d), or by superimposing the CA onto one of the 

fractal surfaces (Fig. 2.4a-c). The CA was initialized by setting all suitable patches 

to state 2 (occupied), and run until the proportion of occupied patches converged to 

a stable equilibrium. A simulation was considered to have reached equilibrium when 

the absolute value of the slope of a regression line fit to the last 100 values of p(t) 

was less than 0.01. 

A value of b = 0.2 was used for all CA simulations (different values of d give 

qualitatively similar results for the same value of 5/d). Local extinction probabilities 

were varied between 5 = 0.01 and 5 = 0.19 so that 0 < 5/b < 1. Five replicate 

simulations were performed for each value of h and for each set of parameter values. 

2.5 Results 

Figure 2.3b shows equilibrium frequencies (p) as a function of h for different values 

of 6 on a random uncorrelated landscape. The behavior of the spatial model on such 

a landscape is similar to that of the non-spatial model. As the proportion of suitable 

habitat decreases, p decreases until a threshold is reached at which the population 

goes extinct. The equihbrium frequency p decreases faster in the CA than in the 

PO model, and the critical proportion of suitable habitat required for persistence is 

larger, especially for higher disturbance probabilities (6 > 0.05), but the spatially 

explicit model creates no qualitatively new results. 

When habitat is destroyed in a fractal pattern, the behavior of the CA changes 

dramatically (Fig. 2.5). The equilibrium frequency (p) on a fractal landscape is 

much higher than on a random landscape or in the PO model. For a given amount 

of suitable habitat, p varies inversely with the fractal dimension of the landscape, i.e. 
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Figure 2.5: Equilibrium frequency of occupied patches, p, as a function of h, for the 
CA on landscapes with different fractal dimensions. Equilibrium curves for the PO 
model (dashed line), and the CA with random habitat destruction, are included for 
comparison. CA results are averages from five replicate simulations. The error bars 
represent 95% confidence intervals. Parameter values are 5 = 0.125, and b = 0.2. 
Statistically, values of p for D = 1.9,1.5, and 1.1 are significantly different for h < 
0.95. This pattern is qualitatively similar for all values of 5/b < 0.9. 

the population does much better when suitable patches are more contiguous. This 

pattern is qualitatively the same for all values of 6/b < 0.90. 

Figure 2.6 shows the extinction thresholds for the different habitat destruction 

regimes as a function of 5/b. On a fractal landscape, the CA population can persist 

with much less suitable habitat than predicted by the PO model (except when 5/b > 

0.925, in which case the population always goes extinct, even if h = 1). Decreasing the 
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Figure 2.6: Extinction threshold, hc, as a function of 5/6 (for b fixed at 0.2) on random 
and fractal landscapes. For the CA, hc is defined as the value of h at which p « 0.01. 
Each point represents the average estimated value of hc in five replicate landscapes. 
The dashed fine gives the extinction threshold for the PO model. 

fractal dimension of the landscape further decreases the amount of suitable habitat 

required for the population to persist. This is especially true when local extinction 

rates are higher (0.5 < 5/b < 0.9). 
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2.6    Discussion 

Spatially implicit models, such as Lande's demographic model and single species 

patch-occupancy models, have provided conservation biologist with valuable insights 

into the problem of habitat fragmentation. Patch-occupancy models, however, are 

mean field approximations to spatially explicit CA models (Caswell and Etter 1993,' 

1999). Comparisons between the two kinds of models provide insights into how the 

spatial arrangement of patches in a fragmented landscape affect population dynamics. 

The amount of habitat loss that a population can tolerate depends on the spa- 

tial arrangement of suitable and unsuitable habitat. On an uncorrelated random 

landscape, the population occupies slightly less territory than predicted by the PO 

model, and is more susceptible to global extinction. The magnitude of this differ- 

ence increases with the local extinction rate. This result is similar to work published 

by Bascompte and Sole (1996), who found that a population was more vulnerable 

to the effects of random habitat destruction in a spatially explicit metapopulation 

model than in its spatially implicit counterpart. Such findings would suggest that 

non-spatial models underestimate the effects of habitat fragmentation on population 

persistence. 

In the real world, however, habitat destruction is rarely a completely random 

process. Instead, fragmentation tends to produce suitable territories of varying size 

with irregular boundaries that are often fractal in nature (Krummel et al. 1987; 

Milne 1988; Scheuring 1991; Sole and Manrubia 1995). On such a fractal landscape, 

a population can tolerate greater habitat destruction, and has a lower extinction 

threshold, than predicted by the PO model. Persistence becomes even more favored 

as the fractal dimension of the landscape decreases. As D —> 1, suitable patches 

become more clumped together and the boundaries between suitable and unsuitable 

territory become smoother. This arrangement insures that on a local scale, patch 

dynamics remain relatively unaffected by habitat destruction outside the periphery 

of a cluster of suitable patches, since few propagules produced in these clusters end up 
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in unsuitable territory. Thus a fractal arrangement of suitable patches increases the 

ability of a population to tolerate habitat destruction by facilitating the recolonization 

of empty suitable territory. This conclusion supports previous studies on reserve 

design for territorial species, which show that the likelihood of population persistence 

increases when suitable territories are clustered together (Doak 1989; Carroll and 

Lamberson 1993; Lamberson et al. 1994). 

Our findings are consistent with those of Dythan (1995), who compared different 

habitat loss regimes in a cellular automata counterpart of a spatially implicit compe- 

tition model proposed by Nee and May (1992). In their model, Nee and May showed 

that increased habitat destruction progressively decreases the absolute abundance of 

the superior competitor while increasing the relative abundance of the inferior com- 

petitor. In CA simulations, Dythan found that when destruction of patches was 

non-random, the relationship between the superior and inferior competitors changed 

in a similar way, but both species were able to persist in less habitat than predicted 

by Nee and May's model. 

Although we have shown that a population on a fractal landscape can persist 

with a relatively small amount of suitable territory, the results presented here should 

not be taken as justification to continue destroying native habitats. Instead they are 

meant to point out the need to think about spatial structure and spatial scale when 

considering conservation strategies. It is unlikely that all the effects of landscape 

structure have been incorporated into our model. For instance, habitat connectivity 

can have adverse effects on populations by facilitating the spread of contagious dis- 

eases and increasing predation pressure. Models of this effect suggest that increasing 

territorial connectivity beyond a critical point can drive a population to extinction 

(Hess 1996). The interaction between such mortality rates and landscape structure 

in spatially explicit models will have to be reserved for future studies. We believe it 

is safe to say, however, that landscape structure plays a vital role in mediating the 

effects of habitat fragmentation on persistence. 
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Chapter 3 

The effects of habitat destruction 
in finite landscapes: A 
chain-binomial metapopulation 
model 

Interestingly, according to modern astronomers, space is finite. This is a 

very comforting thought—particularly for people who can never remember 

where they have left things. 

-Woody Allen 

3.1    Introduction 

Many species living in fragmented habitats exist as an assemblage of local popula- 

tions occupying distinct patches that are connected, to varying degrees, by dispersal 

(Levins 1969; Hanski and Gilpin 1997; Hanski 1999). Ecologists call such assemblages 

metapopulations (Hanski and Simberloff 1997). To persist, a metapopulation must 

balance the extinction of local populations with the colonization of empty patches 

(Hanski 1999). 

A major threat to metapopulation persistence is the destruction of habitat due 
xThis chapter been submitted to Oikos for publication. 
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to human activities. Habitat destruction affects the balance between colonization 

and extinction rates by reducing the number of suitable patches, i.e. patches that are 

capable of supporting a local population. As the number of suitable patches decreases, 

stochastic fluctuations in colonization and local extinctions render the metapopulation 

increasingly vulnerable to global extinction (Lande et al. 1998). 

A common approach to investigating the effects of habitat destruction on the 

abundance and persistence of a species has been to use metapopulation models (e.g. 

Levins 1969; Lande 1987; Nee and May 1992; Lawton et al. 1994; Nee 1994; Tillman et 

al. 1994; Stone 1995; Gyllenberg and Hanski 1997; Bascompte and Sole 1996, 1998; 

Hill and Caswell 1999). These models have shown that the proportion of suitable 

patches occupied declines as habitat is destroyed, and that a metapopulation cannot 

persist when the fraction of suitable patches in the landscape falls below a critical 

threshold. 

Most of these models assume that the landscape consists of an infinite number of 

patches, and describe the landscape in terms of the proportion of these patches that 

are occupied. While such models may provide a good approximation in landscapes 

consisting of hundreds of patches, they may fail badly when the number of suitable 

patches is small (Nisbet and Gurney 1982; Hanski 1999). 

To study the effects of habitat destruction in small finite landscapes, we developed 

a stochastic model that describes the landscape in terms of the number, rather than 

the proportion of occupied patches. The model specifies probabilities of transition 

from any number, to any other number of occupied patches. The change in the number 

of occupied patches has a binomial distribution that can be specified in terms of 

colonization and extinction probabilities. Similar models have been historically used 

in epidemiology (Bailey 1957), and have recently been used by Klok and De Roos 

(1998) and Richards et al. (1999). Because dynamics are a sequence of binomial 

probabilities, the models are called chain-binomial. We will refer to our model as a 

chain binomial metapopulation (CBM) model. 
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In the CBM model, the state of the metapopulation at time t is described by the 

number, n, of occupied patches. The state space is the set of all integers 0 < n < S, 

where S is the number of suitable patches in the landscape. The output of the model 

is a probability distribution vector x(t), where X{(t) is the probability that n = i. The 

CBM model is an absorbing Markov chain, where extinction is the absorbing state. 

In this paper, we analyze the CBM model to study the effects of habitat destruc- 

tion in small landscapes. We use methods from stochastic process theory to examine 

how quasi-equilibrium patch occupancy frequencies, mean extinction times, and per- 

sistence probabilities vary as a function of the number of suitable patches and the 

ability of propagules to search for suitable patches. We also describe a method for 

parameterizing the CBM model from time series data, and then use this method to 

study how the frequency of parasitoid outbreaks affects extinction times of a host 

butterfly population. 

3.2    Model Description 

The landscape contains N patches, S of which are suitable, where S < N. Only suit- 

able patches are capable of supporting a local population. Suitable patches become 

empty when the population occupying them goes extinct, while empty patches be- 

come occupied after being colonized and developing their own populations. Habitat 

destruction decreases the number of suitable patches within the landscape. 

We model the dynamics of the metapopulation as a two-part process. The first 

part describes extinction within patches, while the second part describes the coloniza- 

tion of unoccupied patches. For each of these processes we derive a transition matrix 

whose elements give the probability that i patches will be occupied after a unit of 

time given that j patches are currently occupied. 
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3.2.1    Extinction matrix 

The number of occupied patches decreases when one or more local populations go 

extinct. A local population goes extinct with probability 5 and survives with proba- 

bility 1 — 6. If n patches are occupied before the extinction process, then the number 

of patches occupied after extinction is a binomial random variable with parameters 

(n, 6). The probability, ms{i,j), that i patches are occupied after extinction given 

that j patches were occupied before extinction is 

ms(hj) = ' 

0 

(1 - <&)<#-*    if i<j 

otherwise 

(3.1) 

for i,j < S. Extinction is represented by a (S +1) x (5 + 1), upper triangular matrix 

M-s whose (i,j) element is ms(i,j). For example, when 5 = 3 and 5 = 0.1, 

Mx = 

( 1.000 0.100 0.010 0.001 

0 0.900 0.180 0.027 

0 0 0.810 0.243 

y 0 0 0 0.729 

(3.2) 

3.2.2    Colonization matrix 

The number of occupied patches increases when one or more empty patches are colo- 

nized. An empty patch is colonized with probability Pc and remains uncolonized with 

probability 1 — Pc. If n patches are occupied before the colonization process, then 

the number of patches occupied after colonization is a binomial random variable with 

parameters (n, Pc). The probability that n increases from j to i is the probability that 

i — j patches are colonized, where i > j. Thus the probability mc(i, j) that i patches 
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axe occupied after colonization given j patches were occupied before colonization is 

mc(i,j) = < 

0 

ir'(i-pc)
6-* if*>J 

otherwise 

(3.3) 

for i, j < S. Colonization is thus represented by an (S +1) x (S +1) lower triangular 

matrix, Mc, whose (i,j) element is mc(i, j). 

We assume that colonization is a Poisson process, where the probability that an 

unoccupied patch is colonized is 

Pc   =   P[> 1 offspring arrives at patch] 

=   l-exp(-/(n)) 

(3-4) 

where f(n) is the mean number of offspring arriving at each patch in the landscape, 

which depends on the number of occupied patches producing propagules. If propag- 

ules disperse randomly, the expected number of propagules arriving at a patch is 

/(n) = 
ßn 
~N 

(3.5) 

where ß is the number of dispersing propagules produced by each occupied patch. 

The parameter ß measures both reproductive output and colonization ability. Col- 

onization depends on N because propagules are dispersed over both suitable and 

unsuitable patches. An example of the colonization matrix for b = 0.5, S — 3, N = 6 

is 

Mc = 

( 1.000 0 0 0 

0 0.847 0 0 

0 0.147 0.847 0 

\ 0 0.006 0.154 1.000 

(3.6) 
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Equation (3.5) assumes that the dispersal is random.   Later in Section 2.4 we 

generalize f(n) to incorporate propagule searching ability. 

3.2.3    CBM Model 

The transition from t to t+1 requires both colonization and extinction. The transition 

matrix is 

A = M5MC. (3.7) 

A is a nonnegative column stochastic matrix of dimension (5 + 1) x (5+1), whose 

elements, a^-, give the probability that i patches are occupied at time t + 1 given that 

j patches were occupied at time t. Changing the order of the matrix multiplication 

(i.e. McMj) changes when you sample the metapopulation, after extinction or after 

colonization, but does not substantially change the long-term behavior of the model. 

An example of the matrix A, using the example matrices (3.2) and (3.6) from above, 

is shown below 

A = 

( 1.000   0.086   0.009   0.001 ^ 

0 0.789   0.157   0.027 

0 0.121   0.723   0.243 

0 0.005   0.112   0.729 

(3.8) 

Note that state 1 (global extinction) is absorbing and that the largest probabilities 

he on the diagonal of A. 

Figure 3.1 shows surface plots of A for larger values of 5. When S is small (fig. 

3.1a) transition probabilities are highest near the diagonal of A and drop off sharply 

as you move away from the largest value in each column. As S —► 1 (fig 3.1b.), 

however, the largest transition probabilities lie increasingly above the diagonal of A 

and their distribution in each column becomes more spread out. 
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3.2.4    Search Ability 

The model so far assumes that propagules passively accept the conditions (suitable 

or not) of the first patch they sample. Plant seeds may do so, but many species 

produce propagules that can sample many patches in search for unoccupied suitable 

space before dying. We can modify equation (3.5) for f(n) in this case by assuming 

that a propagule that lands in an occupied or unsuitable patch, leaves that patch and 

samples the landscape again until it either finds an empty suitable patch, or dies. 

The search process is assumed to occur on a fast time scale within the colonization 

process. 

On the first try, the mean number of propagules arriving at each patch is ßn/N. 

Of these, a fraction 

"+(*-*) (3.9) 
N 

land in occupied or unsuitable patches. Of these, a fraction <p survive (0 < <j> < 1), 

and try again. The mean number of propagules arriving at each patch who are on 

their second attempt is then 

^(ü±f-i) (,10) 

Similarly, the mean number of propagules arriving at each patch who are on their 

third attempt is given by 

Thus the total number of propagules arriving at each patch within the colonization 

interval is 

ßn       ßn (n + (N-S)\       2ßn (n + (N-S)\2 

/(n)   =   Är + <hv(, N )+(t>-N\ N J   +"" 
ßn (3.12) 

N - (f>(n + N - S) 
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Note that (3.5) is a special case of (3.12) with <f> = 0. 

The average number of patches that a propagule visits depends on the survival 

parameter <j> and the number of suitable and unsuitable patches 

EYNumber of searches) = — (3.13) 

where q = 1 — ( ^n) < 1. Thus there are fewer searches when n is small compared 

to S because the propagules have a better chance, on each try, of finding an empty 

suitable patch. As more habitat is destroyed (S decreases), the average number of 

searches increases because the probability of landing in an unsuitable patch increases. 

3.2.5    Model Analysis 

An example of a single stochastic realization of the model specified by A is shown 

in figure 3.2. The number of occupied patches fluctuates, and in this example the 

population avoids global extinction for 1000 iterations. The probability distribution 

for the number of occupied patches satisfies 

x(i + l)=Ax(t). (3.14) 

where Xi(t), is the probability that i—1 patches are occupied at time t. Figure fig:C3f3 

shows an example of x(£) as a function of time, starting from an initial condition in 

which all suitable patches are occupied. Note that as t —► oo, the probability that 

the metapopulation goes extinct —► 1. 

The state n = 0 is absorbing; hence the matrix A can be rewritten in the form 

(l e 

\° T 
(3.15) 

where e is a 1 x S row vector of extinction probabilities.  The matrix T describes 
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Figure 3.2: Stochastic realization of the number of occupied patches in a single land- 
scape as a function of time. Parameter values are S = 35, N = 100, ß = 0.5, 5 — 0.1 
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Figure 3.3: Time series of the distribution of landscapes with n occupied patches 
starting from an initial condition in which all patches are occupied. Parameter values 
are S = 10, N = 20, ß = 0.5, 5 = 0.1 and <f> = 0. 

transitions among the transient states (i = 2,3, • ■ •, S + 1). From the matrix T we 

can calculate the quasi-stationary distribution, the expected extinction time, and the 

probability that the metapopulation survives to time t. 

The quasi-equilibrium distribution gives the probability distribution of the num- 

ber of occupied patches, given that extinction has not yet happened and will not 

happen for a long time (Seneta 1966). Let g* denote the probability that i patches 

are occupied (i — 1,...,S). The distribution q can be calculated from the right and 

left eigenvectors, w and v, corresponding to the largest eigenvalue of T: 

qi = WiVi. (3.16) 

The probability vector q, whose elements are qu is normalized appropriately so that 

J2iQi — 1-   The expected number of occupied patches, n, in the quasi-equilibrium 

62 



distribution is then 
s 

n = J>*. (3-17) 

and the variance in n is 

*2(rc) = £^-(£%)2- (3.18) 

Dividing the expected number of occupied patches by the number of suitable patches 

gives 

p = n/S (3.19) 

where p is the expected proportion of suitable patches that are occupied, given that 

the metapopulation has not gone extinct. We will refer to p as the quasi-equiHbrium 

frequency. 

The expected time to extinction is determined from the fundamental matrix of T, 

given by 

F = (I - T)-1 (3.20) 

where I is the identity matrix (Kemeny and Snell 1976). The expected extinction 

time given that j patches are currently occupied, Tj, is calculated by summing the 

jth column of F 

Ti = EA» (3-21) 
i 

The expected extinction time for an initial state selected at random from the quasi- 

stationary distribution is 
s 

f = J2<iiTi- (3-22) 

We will refer to f as the mean expected extinction time of the metapopulation. 

Consider a metapopulation initially occupying j patches. We denote by lj(x) the 
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probability that it persists to "age" x. Let (T1)-- be the (i,j) entry of Tz. Then 

*i(*) = £(T%. (3.23) 
i 

The expected probability that the metapopulation persists to time x for an initial 

state selected at random from the quasi-stationary distribution is 

Kx) = T,M*\ (3-24) 

We will refer to l(x) as the mean persistence probability to time x. 

3.3    Results: The Effect of Habitat Destruction 

In this section we illustrate the effect of habitat destruction on the quasi-equihbrium 

frequency p and the expected extinction time f. We also show how changing the 

searching ability of propagules, 0, effects p and f. Finally, we show how the mean 

persistence probability l(x) varies as a function of time and the number of suitable 

patches. 

Figure 3.4 shows how p depends on the number of suitable patches S. Reductions 

in S cause p to decline. At very low values of S, however, p increases, because p is 

the expected patch occupancy given that the metapopulation has not gone extinct. 

Thus in the extreme case, if there is only a single patch and the population is not 

extinct, that patch must be occupied and p= 1. 

Figure 3.5 illustrates how quasi-equihbrium frequencies are affected by the propag- 

ule searching parameter <f>. Increasing <f> increases both p and the amount of habitat 

destruction the metapopulation can tolerate (fig. 3.5a). Increasing <f> also decreases 

the variance, a2(n), of the quasi-equilibrium distribution (fig. 3.5b). Thus patch oc- 

cupancy frequencies for a species with good searching abilities are less variable than 

a species with poor searching abilities. 
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Figure 3.4: Quasi-equilibrium frequency, p, as a function of the number of suitable 
patches, S. The landscape size is N = 100. Parameter values are ß = 0.5 and 0 = 0. 

65 



1.00 30 

20 

CO 
> 

I i 
i 
i 
i 

^ 

i 
i 
i 

/■/■■/. 

-**"^       ii 

20 40 60 

s 
80 100 

Figure 3.5: Varying the searching ability of propagules. a. The effect of the search 
parameter <j> on quasi-equilibrium frequencies, p. b. The effect of the search parame- 
ter, (f>, on the variance of the quasi-stationary distribution, a(n)2. Parameter values 
are ß = 0.5, 6 = 0.1 and N = 100. 

Figures 3.6 shows the expected time to extinction, f, as a function of the number 

of suitable patches. When f is plotted on a logarithm scale, the slope is a convex 

increasing line (fig 3.6a), hence t increases greater than exponentially with S. Plotting 

f on a linear scale (fig 3.6b.) illustrates the large effect that small changes in S have 

on f. There is a threshold number of patches 5 at which f increases abruptly from 

small values to values so large as to be effectively infinite. The consequences of this 

effect are especially important when f is small (note, the point where the fines in 

fig. 6b appear to meet the x axis depends on the scale of the y axis). Figure 3.6 

also shows that increasing the search parameter 0 increases the expected time to 

extinction. Given 2 species with similar values of ß and 5 but different values of <f>, 

the species with the better searching ability will persist longer for a given value of S, 

and can tolerate a greater loss of suitable habitat. 

Figure 3.7 illustrates how the mean persistence probability to time x, l(x) depends 

on S. In general, l(x) is always a monotonically decreasing function of time, however, 

the rate of decrease is highly sensitive to changes in S. For example when iV = 100, 
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Figure 3.6: The effect of habitat destruction on extinction times, a. Expected ex- 
tinction time r as a function of the number of suitable patches, S, and the search 
parameter <p. f is plotted on a logarithmic scale b. Same as fig. 6a except f is now 
plotted on a linear scale. Parameter values are ß = 0.5, 5 = 0.2, and N = 100. 

ß = 0.5, 8 = 0.2, and <f> = 0.5, a reduction in S form 60 to 50 reduces the chance of 

surviving at least 500 years from 85% to 14%. Thus in terms of persistence, there is 

a threshold range of habitat destruction over which small changes in S dramatically 

affect the probability that the metapopulation persists for a long period of time. 

3.4    Parameter Estimation 

In this section we describe a method for estimating ß and 8 from time series data. 

We focus on the case where 0 = 0 (i.e. propagules have no searching ability). The 

same basic principles apply for species in which <f> > 0, however, it may not always 

be possible to get an accurate estimate of ß when </> is unknown. One way around 

this problem is to specify a value of <f> first. If information is available on the average 

number of patches visited by propagules, then equation (3.13) can be used to calculate 

(f). Otherwise, ß and 8 can be estimated for a range of likely 0 values. 
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Figure 3.7: The mean persistence probability l(x) as a function of time and the 
number S of suitable patches. Parameters values are ß = 0.5, 6 = 0.2, 4> = 0.5, and 
TV = 100. 
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3.4.1    Likelihood function 

We want to estimate parameters for real metapopulations. Suppose data are available 

in the form of a three-way contingency table, where the (i, j, k) entry of the table is 

the number of patches making the transition from state i, to fate j, at time k. The 

table layout for a single time interval (i.e. k = 1) is shown below 

0(t) U(t) 

0(t+l) A c 
U(t +1) B D 

where 0(t) and U(t) are the number of occupied and unoccupied patches at time t, 

and the letters A, B, C, and D represent the number of patches that fall into each 

of the transition categories, and N = A + B + C + D. 

We can estimate ß and 6 by maximum likelihood. The probability that a patch 

undergoes a particular transition is obtained by summing together the probabilities 

of all possible events that could produce the transition. For example, the probability 

that an occupied patch becomes unoccupied during one time interval is 

P[0(t+l)\U(t)] 6(1 - Pc) + SPC5(1 - Pc) + (5PC)
25(1 - Pc) + ... (3.25) 

T^sPT (3"26) 

where Pc = 1 — exp(—bO(t)/N). The first term on the right side of (3.25) is the 

probability the patch was disturbed (i.e. local population went extinct) and not 

recolonized. The second term is the probability that the patch was disturbed, recol- 

onized, disturbed, and not recolonized; and so on. The other transition probabilities 

are calculated similarly and are shown in the table below 

o(t) U(t) 

0(t+l) 
1-6 

1-ÖPr. 

Pc{l ~ Ö) 

1-ÖPr 

U(t +1) 
Ö{1 - pc) 

1-SPr 
l-Pc 
1-SPr. 
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Suppose the transition data is collected over k time intervals.   The likelihood 

function for ß and 8 given the observed data is 

(3.27) 

where 7 is an arbitrary constant, 8 denotes the unknown parameters (ß and 5 in 

this case) and E denotes the observed data. Statistical calculations utilize the log- 

likelihood of (3.27) given by 

k 

InLOMData)   =   £ A(*)ln(l - 6) + B(t)\n{5{l - Pc) + ... 
t=i 

C(t) ln(Pc(l - 5)) + D{t) ln(l - Pc) - iVln(l - 5PC) (3.28) 

The value of ß and 6 that maximizes (3.28), is the maximum likelihood estimate of 

the model parameters given the observed data (Edwards 1992). 

3.4.2    An Example 

Lei and Hanski (1997) and Hanski (1999) recorded five years of patch occupancy data 

(1993 - 1997) on the Glanville fritillary butterfly Meltiaea cinxia in the Aland islands 

(SW Finland). The data is in the form of yearly spatial maps identifying the location 

of occupied and unoccupied patches in a landscape of 63 patches (see fig. 12.9 in 

Hanski [1999]). We reorganized this data into a three-way contingency table, which 

is shown in figure 3.8a. 

Figure 3.8b shows how the number of patches occupied by M. cinxia and a spe- 

cialist parasitoid wasp Cotesia melitaearum varied as a function of time in the Aland 

landscape. The wasp increases the mortality of M. cinxia by attacking the larvae 

of its butterfly host. Between 1993-1995 there was a declining trend in the number 

of patches occupied by M. cinxia due to a high incidence of C. melitaearum (Lei 

and Hanski 1997). In 1995, however, C. melitaearum became nearly extinct in the 
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1993-1994 1994-1995 

o(t) U(t) Total O(t) U(t) Total 
0(t+1) 24 2 26 0(t+1) 10 4 14 
U(t+1) 8 29 37 U(t+1) 16 33 49 

Total 32 31 63 Total 26 37 63 

1995-1996 

0(t) U(t) Total 

0(t+1) 9 6 15 

U(t+1) 5 43 48 

Total 14 49 63 

1996- 1997 

0(t) U(t) Total 

0(t+1) 13 8 21 

U(t+1) 2 40 42 

Total 15 48 63 
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Figure 3.8: Patch transition data for a network of 63 patches in the Aland islands 
(SW Finland), a. A three-way contingency table showing the observed yearly patch 
transitions for the Glanville fritillary butterfly Meltiaea cinxia from 1993 - 1997. b. 
Number of patches occupied by the butterfly M. cinxia and its specialist parasitoid 
Cotesia melitaearum as a function of time. 
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ß 
5 

1993 - 1995  1995 - 1997  1993 - 1997 
0.3488     0.9198     0.6080 
0.4548     0.2826     0.4083 

4.18 yrs.  2.69 x 107 yrs.  13.61 yrs. 

Table 3.1: Likelihood estimates of ß and <5 based on time series data for the Glanville 
fritillary butterfly Meltiaea cinxia. Each column shows the estimated values of ß and 
5 for a specific set of observation years. The expected extinction times for the models 
specified by each set of parameter values are shown at the bottom of each column 
(see text for details). 

landscape, allowing M. cinxia to recover between 1995-1997 (Hanski 1999). 

To look at the effects of C. melitaearum on M. cinxia, we estimated ß and 5 using 

data for 1993-1995 only (parasite outbreak), for 1995-1997 only (low parasite abun- 

dance), and for the entire data set (19.93-1997). Table 3.1 lists parameter estimates 

for each time period. From these estimates we calculated three transition matrices, 

A0 (outbreak years), An (non-outbreak years) and Aau (all years); and calculated f 

for each matrix (Table 3.1). The expected extinction time in non-outbreak years is 

6 million times larger than that in outbreak years. The expected extinction time for 

the entire data set, on the other hand, is only slightly larger than for the outbreak 

years. This pattern suggests that outbreaks of C. melitaearum devastate the M. cinxia 

metapopulation and that more than 2 years are required, following an outbreak, for 

the recovery of M. cinxia. 

We studied how the frequency of parasite outbreaks affect extinction times by 

calculating the matrix 

AF = A^-JA0 (3.29) 

where A; — 1 is the number of years between outbreaks and F = 1/fc is the outbreak 

frequency. The expected extinction time specified by Ap (TF) is in units of k years. 

To convert to a yearly time scale, fp is multiplied by k 

fpy = kfp. (3.30) 
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Figure 3.9: The expected extinction time of Meltiaea cinxia as a function of the 
frequency of Cotesia melitaearum outbreaks, a. f is plotted on a logarithmic scale b. 
f is plotted on a linear scale. 

A plot of fpy as a function of outbreak frequency is shown in figure 3.9. The 

extinction time of M. cinxia decreases greater than exponentially as the frequency 

of C. melitaearum increases, and has a threshold at F « 0.25 (fig. 3.9b). If the 

frequency of outbreaks occur once every four years (or less), then the likelihood that 

M. cinxia goes extinct in the near future is relatively certain. If outbreaks are spaced 

five years apart, however, then the expected time extinction time jumps abruptly to 

about 3000 years. Again we see a sharp threshold in f, this time as a function of the 

frequency of a naturally occurring disturbance. Note that the curves in fig. 3.9 are 

probably a best case scenario, since we assumed outbreaks are evenly spaced in time 

and last only one year. 

3.5    Discussion 

Metapopulation models often describe the effects of habitat destruction on persis- 

tence by assuming that colonization and extinction take place in an infinite landscape. 
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Such models predict that the metapopulation either goes extinct or persists at a sta- 

ble equilibrium, depending on the proportion of suitable habitat. These predictions, 

however, may fail badly when applied to landscapes consisting of only a small number 

of patches (Nisbet and Gurney 1982, Hanski 1999). In a finite landscape a metapop- 

ulation can go extinct simply because all subpopulations happen to go extinct at the 

same time. This is a metapopulation analog of demographic stochasticity, and has 

been termed colonization-extinction stochasticity by Hanski (1999). Colonization- 

extinction stochasticity becomes increasingly important as the size of the landscape 

and the number of suitable patches becomes small (Nisbet and Gurney 1982). To 

describe the dynamics of a finite landscape, a model must account for all possible 

fates of patches. 

Quasi-equilibrium frequencies are a measure of occupied patch densities within 

suitable habitat given the metapopulation has not gone extinct. They are predicted to 

decline as the number of suitable patches, S, declines. At low values of S, however, p 

increases as S declines. This phenomenon corresponds to situations where a scientists 

studies a metapopulation on a small spatial scale (only a few or even one suitable 

patch), or chooses regions to study based on the presence of the species. The latter 

might be common, since most biologists are reluctant to begin studying a species in 

a place where it is known to be extinct. 

Several models (e.g. Lande 1987; Lamberson et al. 1994; With and King 1999) 

have shown that increasing the number of times migrants can search for suitable 

patches increases p and lowers the extinction threshold (i.e. the value of h at which 

a metapopulation goes extinct). In the CBM model, increasing the search parameter 

<f> not only increases p but also reduces the amount of variability in the landscape 

probability distribution (fig. 3.5b). A reduction in a2(n) reduces the probability that 

a landscape will have zero occupied patches, thereby increasing the expected time 

to metapopulation extinction. This result is consistent with previous findings that 

species with better search abilities (as measure here by 4>) can tolerate more habitat 
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destruction. 

Mean extinction times axe a greater than exponentially increasing function of S. 

This relationship means that even small amounts of habitat destruction dramatically 

reduce f (fig 6b). As the number of suitable patches decreases, there is a threshold 

response to habitat destruction in which f decreases abruptly from effectively infinite 

values (on an ecological time scale) to very small values. This threshold is also evident 

in terms of l(x), where the probability of persistence over a particular time interval x 

can also decline drastically for small changes in S (fig. 3.7). In general, f and l(x) are 

much more sensitive to changes in S than p, and thus provide a better assessment of 

the effects of habitat destruction in finite landscapes. Predictions of metapopulation 

viability based on p do not capture the true risk of global extinction in small finite 

landscapes as there is not the same threshold response to changes in S, as there is 

with f and l(x). Large underestimates in metapopulation persistence times can result 

by concentrating only on occupied patch frequencies. 

The parameterization methods presented here are straight forward, and are ap- 

plicable to any species with a metapopulation structure confined to a small network of 

patches. Once the CBM model is parameterized, it can used to predict how p, f, and 

l(x) are effected by a variety of processes, such as habitat loss, parasite outbreaks (as 

in the case of M. cinxia), habitat degradation, etc. As a large majority of the worlds 

threatened and endangered species are confined to small habitats, it is important to 

understand how they will respond to natural and human induced disturbances. The 

CBM model provides a simple but useful framework for studying these processes. 
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Chapter 4 

A Markov chain model of a rocky 
subtidal community: succession 
and species interactions in a 
complex assemblage 

It is a magnificent feeling to recognize the unity of complex phenomena 

which appear to be things quite apart from the direct visible truth. 

-Albert Einstein 

4.1    Introduction 

Marine hard substrate communities have proven to be ideal systems for studying the 

dynamics of multi-species assemblages. They are highly diverse, patchy communities 

that tend to be stable on large spatial scales but are relatively unstable on small 

spatial scales (Jackson 1977; Connell and Keough 1985; Sousa 1985). Experiments in 

these systems have shown the importance of a variety of biotic and abiotic processes, 

including competition (Connell 1961a,b, 1972; Paine 1974,1976; Jackson 1977; Quinn 

1982, Sebens 1986), predator-prey interactions (Menge and Sutherland 1976; Connell 

1983, Witman 1985), mutualism (Vance 1978; Steneck 1982, Witman 1987), distur- 
1This chapter been submitted to Ecology for publication. 
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bance (Dayton 1971; Connell and Slatyer 1977; Paine and Levin 1981; Witman 1987; 

Jackson 1991; Hughes 1994), and recruitment (Sutherland 1974; Roughgarden et al. 

1988; Gaines and Bertness 1992; Graham and Sebens 1996). Because these factors 

can interact in complex ways (e.g. direct species interactions can be nonlinear; shifts 

in species abundance can have indirect effects on the abundance of other species with 

which they do not interact), it is difficult to determine which ecological processes are 

most important for controlling community structure (Wootton 1993). 

One method of untangling this complexity is to seek key processes or species whose 

loss would lead to large changes in the structure of the community (Bond 1994). A 

common approach to identifying these factors is species removal experiments (Paine 

1974,1992; Menge et al. 1994), in which the structure of a community is monitored in 

experimental plots following the removal of a species from the system. This approach 

has been successful in studies of intertidal communities where, for example, it has been 

shown that the exclusion of the starfish Pisaster ochraceus results in the competitive 

ehmination of several sessile species by the mussel Mytilus californianus (Paine 1966, 

1974). Species such as P. ochraceus whose removal produces a dramatic effect are 

termed strong reactors (Macarthur 1972; Paine 1980), or "keystone" species (Paine 

1966). Unfortunately, in communities where no clear keystone species exists, it can 

be extremely difficult to quantify species interaction strengths and to characterize 

the relative importance of weak vs. strong interactions (Menge and Sutherland 1987; 

Paine 1992; Goldwasser and Roughgarden 1993; Laska and Wootton 1998). In many 

offshore marine habitats, such as the rocky subtidal zone, species removal experiments 

are impractical or difficult to perform. To characterize the processes governing the 

dynamics of such communities new theoretical approaches are required. 

The combination of variability on small spatial scales and (relative) stability on 

larger spatial scales, typical of marine and hard-substrate systems, suggests the use 

of Markov chains as a description of community dynamics. These models have been 

used to characterize the dynamics of terrestrial forests (Waggoner and Stephens 1970; 
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Horn 1975; Acevedo 1982; Runkle 1981; Masaki et al. 1992), plant communities 

(Isagi and Nakagoshi 1990; Aaviksoo 1995), and insect assemblages (Usher 1979). 

Their application in marine systems has been limited to a few studies on oceanic 

fisheries (Salia and Erxini 1987; Grant et. al. 1988; Formacion and Salia 1994) and 

a comprehensive analysis of a coral reef community (Tannerei al. 1994, 1996). 

A Markov chain describes a community as a landscape of patches, each of which 

is in one of a number of possible states. The state of a patch is determined by 

the presence of an individual of a given species (or species group). The model is 

based on a transition matrix whose (i, j) entry gives the probability that a patch in 

state j changes to state i in one time step. Markov chains usually converge to an 

equilibrium probability distribution of patch states, and most authors have focused 

on that distribution as a prediction of eventual community composition. There are, 

however, many other analytical tools available for the study of Markov chains that 

have not been widely used (Caswell and Cohen 1991a,b). In addition, sensitivity 

analyses originally developed for studying matrix population models (Caswell 1989) 

can be modified for use in Markov chains to investigate the effects of perturbations 

of the transition probabilities on model behavior. 

In this paper we develop a simple Markov chain to characterize the dynamics 

of epifaunal invertebrate communities living on subtidal rock walls in the Gulf of 

Maine. Data for the model comes from permanent quadrats monitored over an 8 

year period. We apply an array of analytical methods to the model to gain insights 

into the key processes underlying the observed structure of the community. These 

include a similarity analysis for classifying species into functional groups, several 

stochastic process indices (turnover rates, recurrence times, and first passage times) 

for quantifying successional dynamics at small spatial scales, and a set of sensitivity 

analysis for identifying the important factors and key species influencing diversity and 

community stability. While our focus here is on rocky subtidal communities, these 

methods are wholly applicable to any community of sessile organisms, such as plant 

81 



communities, coral reefs, or rocky intertidal communities. 

4.2    Background: Rocky Subtidal Communities 

Much of our knowledge of marine hard substrate communities comes from research 

conducted in the rocky intertidal zone (e.g. Paine 1966; Menge 1976; Underwood and 

Denley 1984; Sousa 1985; Roughgarden et al. 1988). In comparison, the ecology of 

organisms living in rocky subtidal zone is much less well known (Witman and Dayton 

2000). Because subtidal organisms inhabit regions that are typically subject to heavy 

fishing pressures and other human disturbances (Witman and Sebens 1992; Steneck 

1997; Watling and Norse 1998) more attention needs to be focused on these regions 

if we hope to protect the integrity of subtidal systems. 

The rocky subtidal zone encompasses the hard substrate habitat stretching from 

the intertidal fringe down to approximately 200 meters in depth (Witman and Dayton 

2000). Communities are typically dominated by either algae or sessile invertebrates, 

which can occupy up to 90% of the available rock substrate at any one time (Sebens 

1985; Witman and Dayton 2000). Diversity in subtidal communities is generally 

high, with many species coexisting on the substrate surface (Witman 1996). Factors 

thought to be important in maintaining subtidal diversity include predation (Ayling 

1981; Duggins 1983; Witman and Cooper 1983), disease (Scheibling and Hennigar 

1997) competition (Osman 1977, Sebens 1986), physical disturbance (Dayton et al 

1970, Witman 1987, Witman and Dayton 2000), spatial heterogeneity (Witman 1985), 

recruitment (Smith and Witman 1999), sedimentation, current flow (Genovese 1996, 

Genovese and Witman 1999) and the richness of the biogeographical species pool 

(J.D.Witman, F. Smith and R.J. Etter, unpublished). 

Space is frequently a limiting factor in rocky subtidal communities (Osman 1977; 

Russ 1982; Sebens 1986). Species typically compete for space by colonizing and hold- 

ing on to empty space (Sebens 1986; Keough 1983), by ehminating nearby species 
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through overgrowth competition (Russ 1982; Witman 1996), or by interference (Ve- 

limiron and Griffins 1979; Bruno and Witman 1996). In some subtidal communities 

overgrowth competition has been shown to be hierarchical with clear dominant species 

(Sebens 1986), while in others competition is best described as a network in which 

competitive interactions between species are often reciprocal (Buss and Jackson 1979; 

Russ 1982). 

The slope of the rock surface and depth can also affect subtidal community struc- 

ture. At shallow depths, horizontal and gently sloping substrates are generally dom- 

inated by macroalgae, while vertical rock walls are dominated by epifaunal inver- 

tebrates (Witman and Cooper 1983; Sebens 1985; 1986, Witman and Sebens 1988; 

Bruno and Witman 1996; Witman and Grange 1998). This pattern is probably regu- 

lated by multiple factors but is undoubtedly related to higher light levels on horizontal 

substrates, which creates a more favorable environment for the growth and survival 

of macroalgae (Witman and Cooper 1983). With increasing depth, the abundance 

of sessile invertebrates increases and the abundance of macroalgae decreases (Vadas 

and Stenck 1988; Witman and Sebens 1988). Thus differences between horizontal 

and vertical rock wall communities are less distinct at depths greater than 30 meters 

(Witman and Dayton 2000). 

The focus of our study is a vertical rock wall community located at approximately 

30 meters depth on Ammen Rock Pinnacle in the Gulf of Maine (Witman and Sebens 

1988; Leichter and Witman 1997). The data for our model was collected over an 

eight-year period (1986-1994). It consists of a series of photographs chronicling the 

spatial distribution of sessile species on the rock wall substrate through time. Ten 

replicate quadrats, positioned randomly along a 20 meter span of rock wall habitat 

were photographed at least yearly with a Nikonos V camera mounted on a quadrapod 

frame (as in Witman 1985). Color prints were made of the high resolution color 

slides to identify the species of five major taxa of epifaunal invertebrates (sponges, 

sea anemones, ascidians, bryozoans, and polychaetes) and a species of coralline algae 
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Model States Species Type State ID 
Bare Rock BR 
Hymedesmia 1 sp. Sponge HY1 
Hymedesmia 2 sp. Sponge HY2 
Myxilla fimbriata Sponge MYX 
Mycale lingua Sponge MYC 
Metridium senile Sea anemone MET 
Urticina crassicomis Sea anemone URT 
Aplidium pallidum Ascidian APL 
Ascidia callosa Ascidian ASC 
Parasmittina jeffreysi Bryozoan PAR 
Idmidronea atlantica Bryozoan IDM 
Crisia eburnea Bryozoan CRI 
Filograna implexa Polychaete FIL 
Spirorbis spirorbis Polychaete SPI 
Coralline Algae Encrusting algae COR 

Table 4.1: Subtidal species identified in ten quadrats located at 30 meters depth on 
Ammen Rock pinnacle in the Gulf of Maine. Species axe identified in the model using 
the state codes in the right-hand column of the table. 

(Fig. 4.1). A total of 14 species were identified in the quadrats (Table 4.1). 

4.3    Model Structure and Analysis 

We modeled the dynamics of the subtidal community using a Markov chain. The 

model is defined by its transition matrix A, whose elements, atj, give the probability 

that a patch (i.e. a small discrete area on the rock substrate) in state j at time t 

changes to state i at time t + 1. The matrix A is nonnegative (all a^ > 0) and has 

the property that each column sums to 1 (i.e. A is column-stochastic). 

The state of a patch is defined by the species that occupies it. A patch can also 

be empty (bare rock). Thus, since there are 14 species in our data set, the number 

of states in our model is 15. Patch states are identified by the abbreviations given in 

Table 4.1. 

In the model, the dynamics of the community are described in terms of patch tran- 
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Figure 4.1: Photo quadrat showing most of the 14 species of epifaunal invertebrates 
investigated. The thinly encrusting sponge Hymedesmia species 1 (HY1) dominates 
most of the space in this particular quadrat. The orange mounding sponge Myxilla 
fimbriata (MYX) is also prominent. Species abbreviations are as in Table 4.1. Not 
shown are the sea anemones, Urticina crassicornis and Metridium senile, which occur 
in large aggregations, the polychaete Filograna implexa, and the bryozoan, Idmidronea 
atlantica. 
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sition probabilities.  Transition probabilities depend on several ecological processes 

affecting species abundances. 

1. The probability that an empty patch becomes occupied is a function of col- 

onization. Colonization of a patch occurs either by successful recruitment of 

larvae onto bare substrate or by growth of individuals into unoccupied space. 

2. The probability that an occupied patch becomes empty is a function of distur- 

bance. Disturbance within a patch is a result of predation, physical disturbance, 

disease, or any other process that cause an occupied patch to become empty. 

3. The probability that a patch occupied by species j becomes occupied by species 

i is a function of species replacement. Species replacement can occur either 

directly through competitive overgrowth (Sebens 1985) or indirectly when a 

mortality event is followed by colonization within a single time step (Witman 

1987, 1996). 

4. The probability a that patch occupied by species i remains occupied by species 

i is a function of persistence. Species that are resistant to disturbance and 

competitive replacement have high persistence probabilities. 

The proportion of patches in each state gives a description of the species composi- 

tion of the community. Let x(t) be a column vector giving the probability distribution 

of patch states at time t. Then the species composition at time t 4- 1 is given by 

x(t + 1) = Ax(t) (4.1) 

In our model the time interval is one year. This interval was chosen because sub- 

annual observations of quadrat photos show minimal variation in species composition. 

Thus multiplication of x(t) by A projects the community vector forward one year in 

time. 
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Figure 4.2: Cartoon showing the method used to collect state transition data from 
quadrat photos. The squares represent photos from a single quadrat taken at yearly 
intervals. A lattice of approximately 600 points was placed on each quadrat photo 
and species transitions under each point were followed through time. Points were 
space approximately 1 cm apart and are considered to represent a 1 cm2 patch on the 
substrate wall. 

The largest eigenvalue of A equals 1. The corresponding eigenvector, w, gives 

the equilibrium distribution of patch states. If A is primitive, the community will 

asymptotically converge (as t —■> oo) to w from any initial condition. The iih element 

of w (wi) gives the proportion of the landscape occupied by species i at equilibrium. 

4.3.1    Parameter estimation 

Data to construct the transition matrix were obtained by superimposing a lattice of 

evenly spaced points over the quadrat color prints (30 x 20 cm) and counting patch 

transitions through time (Fig. 4.2). Approximately 600 points (a single point every 

1 cm) were assayed per quadrat. We chose this scale because it was approximately 

equivalent to the size of the smallest organism in our data set. For simplicity we will 

refer to each point as a patch, where the size of a patch is taken to be 1 cm2. Since 

individuals of many of the subtidal species are capable of growing much larger than 

1 cm2, a single individual can occupy more than one patch. 
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The transition probabilities were estimated by constructing a two way contingency 

table in which the i, jth entry gives the number of patches that were in state j 

at some time t and in state i the following year. We constructed the contingency 

table by pooling the data among all quadrats and all time intervals. The transition 

probabilities, a^, were calculated as 

aij = ^ (4.2) 

where n^ is the number of transitions from state j to state i (the i, jth. entry of the 

contingency table), and rij is the total number of transitions starting in state j at 

time t (sum of the jth column of the contingency table). 

By pooling the data, we are averaging over small scale spatial variability and 

small scale temporal variability to produce the best single realization of a Markov 

chain for the subtidal community. The questions we are exploring with our model 

concern the expected behavior of the community, given that the present conditions are 

maintained indefinitely. As we will show, analyses of homogenous Markov chains can 

reveal important information about the processes giving rise to observed patterns of 

species abundances. The effects of temporal and spatial variability on model behavior 

are explored in a separate paper (Hill et al. 2000 in prep). 

4.3.2    Identifying Functional Groups 

The number of states in our model is large. To make the Markov chain more tractable, 

we introduce a method for combining species into groups based on the functional 

similarity of species roles within the community. Typically, species are combined into 

functional groups based on their degree of taxonomic relatedness (e.g., Waggoner 

and Stephens 1970, Saila and Erzini 1987, Tanner et al. 1994). The problem with 

this approach, however, is that taxonomically related species may have functionally 

different effects on community dynamics. 
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To form functional groups we used a compression algorithm for Markov chain 

matrices developed by Spears (1998). The algorithm works by combining a pair of 

states i and j together to create a new state i U j that represents the probability of 

being in either state i or state j. Spears shows that the probability of a transition 

from any state k into state i U j is simply the sum of the individual state probabilities 

0-iuj,k — Gi,fc + aj,k (4.3) 

while the probability of a transition from state iU j to any state k is a weighted 

average of the elements a^ and akj, 

ak,il!j 
rajQfc.i + mjak,j 

mi + rrtj 
(4.4) 

where m; is the sum of all the elements in the ith. row of A. 

The functional similarity among species is determined by measuring the distance 

between the rows and columns of A. The distance between the rows and columns 

associated with states i and j is given by 

6i y 
^ k 

middle — mjai>k 

m,i + rrij 
(SK»-Oy|j (4.5) 

(Spears 1998). The value of 5ij can be thought of as a measure of the degree of 

functional dissimilarity between states i and j. Pairs of species with low values of Sij 

are good candidates for combing into functional groups. 

Combining a pair of states reduces the dimension of the transition matrix by one. 

The algorithm for compressing the transition matrix is as follows: 

1. Calculate the distance 6^, i,j= 1,..., S, between all pairs of states. 

2. Find the pair of states i* and j* for which 8i*j* = min(5y). 

3. Compute a weighted average of columns i* and j* (using Eq. 4.5)and place the 
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result in columns i* and j*. 

4. Add rows i* and j* and place the result in row i*. 

5. Delete column j* and row j* from the matrix. 

This process can be iterated by applying the algorithm to the new matrix Ai«U:/-. 

(where A^uj. is the transition matrix for the combined state i* U j*). 

Combing states i* and j* results in the loss of some information from the model. 

We can quantify the loss of information by calculating the percent change ($) in the 

equilibrium distribution as 

* = |W%"W1 x 100 (4.6) 

where w^-uj» is the dominant eigenvector of Aj»uj», and w' is a vector formed by 

setting element i* of w equal to the sum of elements i* and j* and then deleting 

element j*. 

4.3.3    Rates and patterns of succession 

A Markov chain describes two spatial scales—the regional dynamics of the commu- 

nity and the local dynamics of patches. Although the community converges to an 

equilibrium distribution of patches (characterized by w), individual patches change 

state continuously through time. 

To investigate rates of successional change at the spatial scale of a patch, we 

calculated mean turnover rates, Smouchowski recurrence times for each state, and 

the mean first passage times for pairs of states. These indices are a well-known part 

of the literature on Markov chains (e.g., Iosifescu 1980); they provide insights into 

rates of species change within patches and patterns of succession (Caswell and Cohen 

1991a,b). 
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• The mean turnover rate describes the probability that a randomly selected patch 

changes state between t and t + 1, and is given by 

£«*(!-a«) (4.7) 
i=l 

where Wi is the ith element of the dominant eigenvector, and (1 - an) is the 

probability that a patch in state i changes states in the time interval from t to 

t + 1 (Caswell and Cohen 1991b). 

• The Smouchowski recurrence time 0» of state i is the time elapsing between a 

patch leaving state i and then returning to it again. Its mean is given by 

ft—l^L. (4.8) 
Wi{l — an) 

(Iosifescu 1980). A particularly informative measure is the Smouchowski re- 

currence time for bare rock (0i). Its value gives the mean time a patch stays 

occupied once it has been colonized. 

• The mean first passage time is the average time it takes for a patch in state j 

to first reach state i. This measure can provide insights into the relative rates 

of succession. Let r^- denote the mean first passage time from state j to state 

i. The matrix T whose elements are rtj is given by 

T = (Vdg)-
1(I-Z + ZdgE) (4.9) 

where V is a matrix whose columns all equal w, Z is a matrix given by 

Z = [I - (A - V)]-1 (I is the identify matrix), E is a matrix of ones, and the 

subscript dg denotes matrices containing the diagonal elements of V and Z 

(Iosifescu 1980). Note that the mean recurrence time for a state is given by the 

diagonal elements Tu of T. The difference between Tü and 9t, however, is that 
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Tu can be heavily influenced by patches remaining in state i from time t to t +1 

(Caswell and Cohen 1991b). Thus, 9{ is a better estimate of recurrence times 

than Tu. 

4.3.4    Sensitivity analysis 

We used sensitivity analysis to investigate how species abundance would vary in 

response to changes in the elements of A. The effect of such changes provides a 

measure of how important a given transition probability is to the overall composition 

of the community. To quantify this effect, we derive sensitivity formulas for the 

dominant eigenvector of a Markov chain and for a scalar measure of species diversity. 

Eigenvector sensitivities provide information on how the equilibrium distribution 

of patches w changes in response to changes in A. Tanner et al. (1984) attempted 

such an analysis for a Markov chain of a coral reef community, but their calculations 

are flawed because they failed to account for the fact that the column sums of a 

Markov chain transition matrix must sum to one. 

The dominant right eigenvector (here represented as Wi) of A gives the stationary 

community structure distribution. The sensitivity of each element in wj to changes 

in A can be found using Caswell's (1989, 2000) formula for scaled eigenvectors 

a||wil|   =. ^Ilwxlj  + y a||w1|| OO-mj ^ ^ 

dciij        day      ££. damj daij 

If the dominant eigenvector is already scaled so || Wi ||= 1, then 

?fL,p.-Wl^p. (4.11) 
ddij       düij ^ dciij 

where 

^ - «r i ^w, (4,2) 

wy> is the )th element of Wi, t;|m) is element i of the left eigenvector vm, and Am is 
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the mth eigenvalue. 

The derivatives da^fda^ in (4.10) are determined so that the change in ay is 

compensated by the other entries in column j of A. While many compensation 

patterns are possible (Caswell 2000), here we used proportional compensation 

dakj =    ~akj /4J3N 

ddij     1 — aij 

in which the change in ay is distributed over the other the entries in the jf'th column 

proportional to their value. 

Eigenvector sensitivities provide insights into how changes in transition probabil- 

ities affect community structure; however, they can also be cumbersome to interpret. 

A simpler approach, akin to the concept of eigenvalue sensitivities in demographic 

modeling, is to use equation (4.10) to compute the sensitivity of a summary statistic 

describing community structure. 

A summary statistic commonly used in community ecology is the Shannon-Wiener 

diversity index (H). Using this index, the diversity of the stationary distribution can 

be calculated as 

H   =   -^ln^ (4.14) 
i 

The sensitivity of H to changes in a^ is derived by taking the derivative of H with 

respect to Oy 

—-   =   -^(lnwjfe + lj-r— (4.15) 
ddij ^ ddij 

where dwk/daij is the fcth element of dw/ddij. Equation 4.15 provides a way of 

characterizing how changes in the transition probabilities affect a scalar measure of 

community diversity. 
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4.3.5    Effects of species removals 

We characterized the functional importance of each species by calculating the effect 

of its removal on community diversity. Diversity, as defined by the Shannon-Wiener 

index H, is a measure of both species richness and the evenness in species abundance 

(Lloyd and Ghelardi 1964). Because species removal automatically affects richness, 

we want a measure that is sensitive only to the evenness component of diversity. 

Evenness J(S) for a community with S species is defined by the ratio 

where 0 < J(S) < 1. 

To simulate the removal of species i, we first set row i and column i of A to zero 

and renormalized all the other columns so they sum to one. Call this matrix, with 

species i removed, A» and its equilibrium distribution w''l Then the percent change 

in evenness A Jj is 
A _      Ji(S - 1) - J(S) 

1 =     J(S) x 10° (4J7) 

where J, (S -1) = Hi/ ln(5 -1) and Hi is obtained from w(i). If the removal of species 

i has no effect on the relative abundance of the rest of the community, A Jt = 0. If 

A Ji < 0, then species i has a positive effect on evenness. If A Jj > 0 then the presence 

of species i has a negative effect on diversity. 

Species removal also affects community resilience (i.e.   the rate the community 

converges to equilibrium).   We measured resilience using Dobrushin's coefficient of 

ergodicity 
1 s 

«(A) = - max Y^ \<kj ~ aik\ (4.18) 

(Dobrushin 1956a,b). The coefficient 5(A) satisfies the condition 

-/AN f llAxi — Ax2||] 
a A) = sup <^ Y JT1 4-19 

xlX2  [      ||Xi -X2||      J 
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where Xi and X2 are probability vectors of size 5x1 whose elements sum to 1 

(xi 7^ x2). The value of ä(A) gives the minimum contraction in the distance between 

two initial vectors after multiplication by A. Thus the lower the value of ö(A), the 

faster the community is predicted to converge to equilibrium. 

Dobrushin's coefficient ö(A) gives the minimum contraction rate, but does not 

show how that minimum relates to the typical contraction rate. To quantify this 

typical rate, we calculated the distribution for the contraction rate 

= HAxx-Axall 

l|xi-x2|| 

by randomly selecting 10000 pairs of probability vectors, Xi and x2, from a uniform 

distribution on the 5—1 simplex. We represent the mean of this distribution as 4>. 

If the removal of species i increases ä(A) or <fr then species i has a stabilizing 

affect on the community. If the removal of species i decreases ä(A) or <j> then species 

i has a destabilizing affect on the community. 

The measures ö(A) and </> give measures of community resilience by estimating 

contraction ratios starting from any initial condition. We chose these measures be- 

cause disturbances in ecological systems can be quite large (Dayton 1971; Witman 

1987). 

4.4    Results 

The transition matrix A is shown in Table 4.2. The matrix is organized so that 

colonization probabilities are given in the first column (Bare Rock —► Species i) and 

disturbance probabilities are given in the first row (Species i —» Bare Rock). Per- 

sistence probabilities are located along the diagonal of the matrix (bold elements), 

while species replacement probabilities are given by the off diagonal elements of A 

(excluding the first row and column). 

The first column of A shows that colonization probabilities are highly variable, 
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ranging over almost two orders of magnitude. The best colonizer by fax is the bry- 

ozoan Crisia (a^u = 0.32), which is three times as likely as the next best colonizer 

(Hymedesmia 1; ah2 = 0.10) to occupy a previously empty patch. The remaining 

species in the community have much lower colonization rates (probabilities range be- 

tween 0.005 and 0.062). The probability that an empty patch will not be colonized 

by any species over a one-year period is 0.29. 

Persistence probabilities and disturbance probabilities also vary a great deal among 

species, reflecting a wide range of variation in invertebrate life histories. The species 

with the largest persistence probabilities are Urticina (0.863) and Mycale (0.839), 

while the species with the smallest persistence probability is Spirorbis (0.03). The 

species with the largest disturbance probability is Metridium (0.266), while the species 

with the smallest disturbance probability is Hymedesmia 1 (0.029). 

Approximately 94% of the replacement probabilities (off-diagonal elements of A) 

and 90% of the symmetric pairs of replacement probabilities are non-zero (%• and 

dji > 0; i,j T^ 1), indicating that competition between species is reciprocal (i.e. 

species i can replace species j, and species j can replace species i). Most replacement 

transitions, however, are improbable, with 84% of them having probabilities less than 

0.05. Replacement probabilities greater than 0.05 are generally much larger than 

their symmetrical pair (a*.,- » a^ or visa versa), indicating that species competition 

is directional (i.e. species i replaces species j more often than j replaces i). The one 

exception is for the species Hymedesmia 1 and Crisia, which tend to replace each 

other with approximately equal probability. 

The row sum (RS = £i*i a{j) of the elements of the ith row of A gives a measure 

of the competitive ranking of species i relative to other species in the community. 

The highest ranked competitors are Crisia (RS = 2.21), Hymedesmia 1 (RS = 1.71) 

and Filograna (RS = 0.50). The lowest ranked competitors are Parasmittina (RS = 

0.061), Spirorbis (RS = 0.062), and Urticina (RS = 0.067). 
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Figure 4.3: Predicted and observed species abundances, a. Predicted equilibrium 
abundances of subtidal species (given as the percent cover of substrate) at Ammen 
rock in the Gulf of Maine, as given by the dominate eigenvector w of the transition 
matrix A. b. Observed species abundances at three rock wall sites located nearby the 
quadrats for the years 1987, 1990, and 1992. The observed values are means taken 
over all 3 sites and across all 3 years. Error bars represent 1 S.D. 

4.4.1    Equilibrium distribution 

The equilibrium distribution of patch states is shown in Figure 4.3a. At equihbrium 

the model predicts that sponges (Hymedesmia spp., Myxilla, and Mycale) will occupy 

over 50% of the rock substrate, and that Hymedesmia 1 and the bryozoan Crisia will 

dominate the community (together occupying 58% of the substrate). As a comparison, 

Figure 4.3b shows the mean relative abundance distribution at six quadrats located 

within 75 meters of the model quadrats. Mean abundances are for the years 1987, 

1990, and 1991, and include only those species represented by our model (about 

20% of the substrate was occupied by species not found in the model quadrats). The 

equihbrium abundances predicted by the Markov chain fall within the range of species 

variability observed among the six independent quadrats. 
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4.4.2    Quantifying functional relatedness and combining species 

into functional groups 

To quantify the degree of relatedness between species in the subtidal community, we 

generated a dissimilarity dendogram based on Spears' distance metric o~ij (Fig. 4.4). 

The dendogram was constructed using the UPGMA method (unweighted pair group 

method with arithmetic mean) (Ayala 1976). The most similar states are bare rock 

and the polychaete Spirorbis (S = 0.022). This implies that the other species do 

not perceive a patch occupied by Spirorbis differently than an unoccupied patch. The 

next most similar states are the ascidians, Aplidium and Ascidia (5 = 0.040), followed 

by the pairing of the ascidians with the bryozoan Idmidronea (8 — 0.081). The 

dendogram shows there is much more functional redundancy among the bryozoans, 

ascidians, and polychaetes, then among the sponges and sea anemones, and that 

species do not necessarily cluster according to taxonomic groups. 

Figure 4.5 shows the percent change, $, in the equihbrium distribution (Eq. 4.6) 

as a function of the reduction in the number of states in the model. We reduced 

the size of the state space by combining pairs of states in order of their similarity 

(<5y), using the compression algorithm described in section (4.3.2). As more states 

are combined <& increases, rising to a maximum of about 20% after combing 13 out 

of the original 15 states (at which point A is a 2 x 2 matrix). 

We set a threshold level of $ = 1% (dashed line in Fig. 4.5) as a cutoff criteria 

for combining species into functional groups. Reducing the number of states by five 

produces a change in the equihbrium distribution of about 0.7%. The order in which 

these states are combined by the compression algorithm is as follows: 

• BR with SPI 

• APL with ASC 

• [APL U ASC] with IDM 
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Figure 4.4: Distance dendogram of species states generated using Spears' % metric. 
States are clustered according to their degree of functional similarity with other states 
measured as the distance between the rows and columns of the transition matrix 
A (see text for details). The dendogram was created using the UPGMA method 
(unweighted pair group method with arithmetic mean). 
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Figure 4.5: The percent change in equilibrium distribution ($w) as a function of the 
reduction in the number of states in the Markov chain. The number of states were 
reduced by combining states in the order of their similarity, (see text for details). 
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Functional Group (FG) 
APT 
ASC 
IDM 
PAR 
 SPI  

Table 4.3: Subtidal species that were combined into a single functional group. These 
species were combined because they perform functional similar roles in community 
dynamics (see text for details). Species are identified by the state codes used in table 
Tab:C4Tl. 

• [APL U ASC U IDM] with [BR U SPI] 

• [BR U SPI U APL U ASC U IDM] with PAR 

where [i U j U A;] means that the states i, j, and k form a functional group. For 

our model, the compression algorithm reduces the size of the state space by combing 

states into a single functional group. While the threshold of 1% is somewhat arbitrary, 

we felt it was a good cut off point because it kept a polychaete state in our model 

(Filograna). 

We chose to combine the states SPI, APL, ASC, IDM and PAR into a single 

functional group, thereby reducing the number of states in our model to 11. We 

chose not to include BR in this grouping since it represents processes related to 

disturbance, and is a non-species state. We will identify the functional group species 

by the symbol FG (Table 4.3). The compressed transition matrix obtained by forming 

this functional group is shown in Table 4.4. All results throughout the remainder of 

the paper are based on this matrix (which we will still refer to as A). 

4.4.3    Characterizing patch dynamics 

Turnover rates 

The mean turnover rate of a patch is 0.3762yr-1 (Eq. 4.7). Thus on average, a patch 
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Figure 4.6: Smoluchowski recurrence times, a. Bar graph of the Smoluchowski 
recurrence time #; for each state in the model. The height of each bar is the expected 
time (in years) elapsing between a patch leaving states i and then returning to it 
again, b. Smoluchowski recurrence times as a function of the equilibrium distribution 
of patch states w. A least square regression of the data on a log-log scale yields the 
power function 0* = 2.78W7"1'09 (R2 = 0.81 p < 0.001). 

changes state once every 2.6 years and approximately 38% of the patches in a given 

quadrat change state each year. 

Smoluchowski recurrence time 

Figure 4.6a shows that Smoluchowski recurrence times 9i are highly variable among 

species, ranging from 7.2 to 285.9 years. Hymedesmia 1 and Crisia have the shortest 

recurrence times (?« 8 years). The sea anemone Urticina has by far the longest 

recurrence time, while Metridium, Mycale, Hymedesmia 2, and coralline algae have 

recurrence times on the order of 100 years. Figure 4.6b shows that recurrence times 

are highly correlated with equilibrium abundances. Thus the dominant species have 

the shortest return times once they are displaced from a patch. 

The Smoluchowski recurrence time for bare rock, 61} gives an estimation of the 

mean time that a patch remains occupied once it is colonized.   The value of 0X for 

104 



the subtidal system is approximately 16.5 years (Fig. 4.6a). Since the mean turnover 

time is 2.6 years, this result suggests that after colonization a patch changes state 

approximately 6-7 times before it becomes unoccupied again. 

First Passage Times 

Figure 4.7a depicts the elements of the first passage time matrix T. In general, there 

is little variation in first passage times across the rows of T (except for the diagonal 

elements r«), indicating that the expected time it takes for a patch to become occupied 

by state i is independent of by the current state of the patch (given that it is not 

currently in state i). Figure 4.7b illustrates this point by comparing the average 

value of the ith row of T (excluding T«) to 0*. The values of the two measures are 

almost identical suggesting that successional processes are only slightly affected by 

the current state of the community. 

4.4.4    Sensitivity Analysis 

The eigenvector sensitivities characterize how changes in the elements of the transition 

matrix affect the predicted equilibrium distribution in the community. Applying the 

eigenvector sensitivity formula (Eq. 4.10) to the matrix A gives the sensitivity of 

w to changes in each of the elements of A. Since there are 11 states in our model 

the number of eigenvector sensitivities is 11 x 11 x 11 = 1331. Table 4.5 shows the 

distribution in the magnitude of the eigenvector sensitivities. The majority of them 

are small. Only about 4.5% of the sensitivities have magnitudes that are less than 

-0.25 or greater than 0.25, suggesting that changes in the majority of transition 

probabilities have little effect on community composition. 

The sensitivity of diversity better illustrates how changes in the transition proba- 

bilities affect community structure. Figure 4.8 shows the sensitivity of H to changes 

in the elements of A.   We have separated positive and negative sensitivity values 
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Figure 4.7: First passage times, a. A 3-D bar graph showing the value of the elements 
of the first passage time matrix T. The height of each bar represents the expected 
time (in years) it takes a patch to go from state j to states i. b. Comparison of the 
mean of the ith row of T (excluding r^) with 0j. Error bars represent 95% confidence 
levels of row means. 

onto two graphs for visual clarity. Changes in a^- that have the largest positive af- 

fect on H primarily involve transitions from Hymedesmia 1 and Crisia (Fig. 4.8a). 

Diversity is also positively sensitive to several transitions from Bare Rock (i.e. col- 

onization probabilities), the FG functional group and Myxilla. Changes in a^ that 

have the largest negative affect on H primarily involve transitions to Hymedesmia 1 

and Crisia (Fig. 4.8b). Note that the magnitudes of the negative sensitivities are 

much less than the positive sensitivities. In general, the diversity sensitivities predict 

that increases in the replacement probabilities of Hymedesmia 1 and Crisia by the 

less dominant species (especially Urticina and Mycale) would result in the greatest 

increase in community diversity. 
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Figure 4.8: Sensitivity of equilibrium diversity (H) to changes in a^. (a.) Positive 
sensitivities. Bars with large positive values represent transition probabilities that 
lead to greater community diversity when increased, b. Negative sensitivities. Bars 
with large negative values represent transition probabilities that lead to a reduction 
in community diversity when increased. 
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Sensitivity Range Number Percent 
<-l 4 0.30 

-1 to -0.25 21 1.58 
-0.25 to -0.1 60 4.51 
-0.1 to 0.1 1173 88.13 

0.1 to 0.25 39 2.93 
0.25 to 1 29 2.18 

>1 5 0.38 
Total 1331 

Table 4.5: Distribution of eigenvector sensitivities. The first column gives the range 
of sensitivity values, the second column is the number of sensitivities that fall within 
a given range, and the third column is the percent of sensitivities that fall within a 
given range. There are a total of 1331 eigenvector sensitivities values (11 x 11 x 11) 
for our model. 

4.4.5    Species removal effects 

Figure 4.9 shows the effect of removing a species on evenness. The removal of Myxilla 

produces the largest decrease in AJ,, however, the overall percent change in even- 

ness is only about 5%. The removal of Crisia or the functional group species (FG) 

also reduces evenness, resulting in a decrease in A J* of about 3%. The removal of 

Hymedesmia 1, on the other hand, produces the largest increase in AJi? but again 

the overall change in evenness is only about 5%. Thus the removal of any one species 

appears to have little impact on the evenness of the remaining species in the commu- 

nity. 

Figure 4.10 shows the effect of removing a species (or bare rock) on the minimum 

contraction rate ö(A) and the mean contraction rate 4>. The dashed lines are the 

values of ö(A) and <j> when all species are present. The greatest increase in 5(A) 

occurs when bare rock is removed, while the greatest decrease occurs when Urticina 

is removed. The greatest increase in 4> occurs when bare rock and Crisia are removed, 

while the greatest decrease occurs when Urticina and Mycale are removed. Thus the 

model predicts that Urticina and Mycale have a destabilizing effect on the community, 

while bare rock, and Crisia have a stabilizing effect on the community. 
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Figure 4.10: Predicted change in community resilience resulting from the removal 
of state i from the community, a. Dobrushin's coefficient of ergodicity, ä(A), as 
a function of the removal of species i. ä(A) gives the minimum contraction rate 
between two probability vectors after multiplication by A. b. Mean contraction rate 
for random pairs of probability vectors (j) as a function of the removal of species i. 
Error bars represent 95% confidence intervals. The dashed lines in the graphs are the 
ä(A) and <f> values for the entire subtidal community. 
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4.5    Discussion 

Markov chains are powerful tools for analyzing the dynamics of sessile communities. 

This paper has presented an array of analytical methods that ecologists can apply to 

Markov transition matrices to quantify the functional relatedness of species, to orga- 

nize species into functional groups, and to characterize rates of successional change. 

We also introduced a method for calculating the sensitivity of the dominant eigen- 

vector and species diversity measures to changes in species transition "probabilities. 

Finally, we presented methods for examining the consequences of species removal on 

community diversity and resilience. 

The transition matrix of the Markov chain provides insights into the complexity of 

interactions within the community. In particular, the replacement probabilities (off- 

diagonal elements of A) provide a measure of species connectivity, sensitive to both 

the number and strength of species interactions. Tanner et al. (1994) have proposed 

that the proportion of positive off-diagonal elements of A is an index of the level of 

connectivity in a community, and have suggested that it could be used to characterize 

and compare different ecosystems. While we agree with their assessment, we suggest 

that a better measurement of connectivity would take into account both the number 

and relative magnitude of the positive off-diagonal elements. One possibility is to use 

a matrix entropy index, normalized to the number of species states in the model. Let 

A be the transition matrix in which the column and row corresponding to bare rock 

have been removed (we are only interested in species replacement probabilities), with 

the columns renormalized so they sum to one. The normalized entropy index is 

*--(x:|v»(a«))j^ («i) 

where N is the number of states in A, and JVln(iV)) is the maximum entropy of the 

matrix. A value of E = 1 means that all the replacement probabilities equal 1/N. 

A value of E = 0 means that in each column of A either the persistence probability, 
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or one of the replacement probabilities equals 1 and all the other elements are zero. 

The value of the entropy index for the uncompressed subtidal transition matrix is 

E = 0.40, and for the compressed matrix is E = 0.36. Entropy values for published 

transition matrices of several marine and terrestrial systems are shown in Table 4.6. 

Calculations of Tanner et aVs complexity ratio (RC) are also shown as a comparison. 

There is a slight correlation between E and RC (rp = 0.52, p « 0.11), however, 

this correlation is not significant. More importantly, entropy values appear to do 

a better job of distinguishing between community types than RC. For example, 

three transition matrices published by Rego et al. (1993), describing the dynamics of 

deciduous forests subject to different fire regimes, all have RC values equal to one, 

yet their E values range from 0.43 to 0.75 (Table 4.6). 

The simplest form of information obtained from a Markov chain is the steady 

state distribution of patches. The dominant eigenvector (w) predicts the expected 

equilibrium abundance of species. In our analysis we found that predicted equilibrium 

abundances were in good agreement with observed species abundances within a 75 

meter radius of the permanent quadrats. Several ecologists have utilized Markov 

chains primarily as a tool for predicting the future composition of a community (e.g. 

Formacion and Saila 1994; Aaviksoo 1995; Srinath 1996, Childress et al. 1998). In 

some cases these predictions have done a relatively poor job (e.g. Childress et al. 

1998). We feel, however, the real strength of Markov chains for community ecology 

lies not in their ability to accurately predict the future, but in the insights they can 

provide into community processes. 

Identifying functional groups: Spears (1998) distance metric <% is a novel way 

of categorizing species into groups based on their level of functional similarity, where 

function is measured by the species role in community dynamics. When this metric is 

applied to the subtidal transition matrix, the results suggest there is a large amount 

of functional similarity between the polychaete Spirorbis, the ascidians Ascdia and 
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Aplidium, and the bryozoans Parasmittina and Idmidronea. These species were all 

functionally similar to bare rock suggesting that they are relatively weak competitors 

for space. 

The dendogram in Fig. 4.5 shows that it is not always wise to combine species 

into functional groups based solely on taxonomic considerations. For example, the 

sea anemone Metridium is more functionally similar to the sponges Hymedesmia 2 

and Myxilla then it is to the sea anemone Urticina. This suggests that Metridium and 

Urticina play functional distinct roles within the subtidal communities. Incorporating 

these species into a single functional group would have a large effect on model behavior 

and could potentially obliterate important interactions. 

We were able to reduce the number of states in our model by pooling similar 

species into functional groups using Spears' (1998) compression algorithm. This al- 

gorithm allowed us to combine states together with only a minimal loss of ecological 

information (less than a 1% change in the equihbrium community). In the subtidal 

community, the compression algorithm reduced the size of the state space by combin- 

ing species into a single functional group. The reduction process, however, need not 

follow this pattern. If similar pairs of species cluster into distinct groupings, then the 

compression algorithm will organize species into multiple functional groups. The size 

and number of functional groups formed depends on the particularities of the species 

in a given community and the threshold amount of error ($) one is willing to accept 

in the model. 

Rates and patterns of community change: Turnover rates and Smoluchowski 

recurrence times 0* describe rates of succession at the spatial scale of a patch, and 

are useful ways of comparing the time scale of local dynamics between different types 

of communities. For example, we calculated turnover rates for transition matrices 

compiled by Tanner et. al. (1994) of three coral reef communities and obtained values 

of 0.10, 0.20 and 0.23 per year. For our model, we calculated a turnover rate of 0.38 
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suggesting that species turnover in the subtidal community is 1.7 to 3.8 times greater 

than in the reef communities studied by Tanner et al (1994). Similarly, comparisons 

of the rate of recurrence of species within patches could be made by calculating the 

mean value of 0j among all species (0). For instance, in the rocky subtidal community 

9 equals 81.4 ± 23.1 years (1 S.E.), while the coral reef communities have 9 values of 

201.2 ± 64.2 years, 171.4 ± 72.4 years, and 190.8 ± 100.3 years. This suggests that 

the subtidal community of epifaunal invertebrates studied here is more dynamic than 

scleractinian coral communities on the Great Barrier Reef. 

First passage times provide information on patterns of successional change. In 

the subtidal community, the order of species replacement is fairly independent of the 

species currently occupying the patch. In general there is no evidence that coloniza- 

tion of patches follows any kind of successional pathway (i.e. species i —* species j —► 

species k). Thus facilitation does not appear to be an important factor in community 

development. Instead our analysis suggests that patch succession follows an inhibi- 

tion model (Connell and Slatyer 1977) in which species colonize a patch and maintain 

it until they die or, in some rare cases, are competitively replaced by another species 

(usually either Hymedesmia 1 or Crisia). 

Sensitivity analysis: The eigenvector sensitivities show that changes in the majority 

of the transition probabilities would have little effect on the structure of the subtidal 

community. While only 59 of the 1331 eigenvector sensitivities had large values, there 

was no obvious pattern relating transition probabilities to changes in community 

structure. The problem with analyzing the eigenvector sensitivities in general is 

that there is often so many of them that their meaning is hard to interpret. The 

eigenvector sensitivity formula for Markov chains, however, is useful for calculating 

summary statistics related to the dominant eigenvector. Here we used this formula 

to derive an equation for the sensitivity of Shannon-Wiener diversity as a function 

of changes in the elements of A. Similarly, we could use equation (4.10) to calculate 
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the sensitivity of several other measures of diversity. For instance, the sensitivity of 

Simpson's index of diversity (D = 1 - £i tu?) is g. = _2 j\ w^. 

The diversity sensitivities show that changes in transition probabilities associ- 

ated with Hymedesmia 1 and Crisia have the greatest effect on cornmunity diversity. 

Because these species dominate in the community, increases in the ability of less dom- 

inant species to replace them is certain to have a positive impact on diversity. While 

this result is not surprising, other sensitivity predictions are less obvious. For in- 

stance, transitions from Bare Rock are predicted to have a greater effect on diversity 

than transitions to Hymedesmia 1 and Crisia. This pattern suggests that competition 

overgrowth by the two dominant species plays a relatively minor role in structuring 

the community compared to colonization processes. This finding is consistent with 

observations by Witman and Sebens (1990), who found little evidence that vegetative 

encroachment by Hymedesmia spp. had a significant affect on community structure 

in the Gulf of Maine. 

Species removal: The removal of Hymedesmia 1 would produce the largest increase 

in species evenness (AJ* = 5%). This is not completely surprising since Hymedesmia 

1 occupies the largest proportion of patches. Figure 4.11a shows the percent change 

in the equihbrium abundance of each state as a result of removing Hymedesmia 1. 

While the abundance of all the remaining species increase, several of the less dominant 

species (Hymedesmia 2, Mycalle, Urticina, and coralline algae) show greater percent- 

age increases than the dominant species Crisia. Still, the overall change in evenness 

is relatively small, suggesting that community composition would not change very 

much. 

The removal of the Myxilla would produce the largest decrease in species evenness, 

but again the impact is small (AJ* = -5%). Figure 4.11b shows that in the absence 

of Myxilla the abundance of the dominant species, Hymedesmia 1 and Crisia, would 

increase by about 10%, while increases in the less dominant species range from 2.5% to 
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Figure 4.11: The percent change in species abundance as a as a result of removing a. 
Hymedesmia 1, and b. Myxilla from the model. 

8% (except for Hymedesmia 2) which decreases by about 10%). Overall, the removal 

of any one species produces only a small change in evenness, suggesting that none of 

the species plays a keystone role in maintaining diversity. 

The stability analyses, a(A) and </>, show that the removal of the Bare Rock 

state and Crisia would result in the largest decrease in the convergence rates. We 

can quantify the relative importance of this decrease on community resilience by 

estimating the time it would take two probability vectors to converge to within a 

distance of 0.01 (i.e. |[xi—x2|| = 0.01). The maximum convergence time is calculated 

as Tmax = In0.01/ Inä(A), while the mean time is T = In0.01/ In4>. When all states 

are present, Tmax = 39.6 years and T — 8.2 years. In the absence of bare rock, 

Trnax = 56.1 years and T = 10.6 years, which amounts to an increase in Tmax and T 

of 41.2% and 28.5% respectively. The removal of Crisia results in a 22.1% increase 

in T but only an 8.3% increase in Tmax. Thus, while bare rock and Crisia are both 

important for community resilience, bare rock appears to be more important in cases 

when perturbations are large. These results suggest that processes that open up space 

(e.g. disease, physical disturbance, predation) and processes that effect colonization 
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(e.g. laxval transport, regional species pool), help to stabilize the community. 

While our focus here is on rocky subtidal communities, these methods are applica- 

ble to a wide range of terrestrial and aquatic communities, such as plant communities, 

coral reefs, or rocky intertidal communities. Markov chains are relatively easy to pa- 

rameterize. Data can be collected simply by censusing quadrats at fixed intervals 

and recording the species occupying the space at each of a set of points. Pooling the 

data to estimate transition probabilities averages over small scale spatial and tempo- 

ral variability and results in a homogenous Markov chain. While such models ignore 

the effects of temporal-, density-, and spatial-dependence, analyses of homogenous 

Markov chains can provide important insights into successional processes and the 

effects of species interactions on community structure. To assess the importance of 

stochastic and nonlinear effects, non-homogenous Markov models can be developed 

which reflect the temporal-, density-, and spatial-dependent realities of the commu- 

nity (Hill et al. in prep.). Whether including these higher-level effects provides new 

insights into the role of species in a community, however, remains to be determined. 
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Chapter 5 

Temporal and spatial variation in 
successional patterns in a rocky 
subtidal community: Statistical 
methods, Markov chain models, 
and Species distributions 

Consistency is contrary to nature, contrary to life. 

-Aldous Huxley 

5.1    Introduction 

Subtidal rock surfaces in New England support highly diverse communities of sessile 

invertebrates that form a tight patchwork of species bound to the hard substrate 

(Sebens 1985; Witman and Dayton 2000). Several processes are thought to be im- 

portant in maintaining subtidal diversity, include predation (Ayling 1981; Duggins 

1983; Witman and Cooper 1983), disease (Scheibling and Hennigar 1997) competi- 

tion (Osman 1977, Sebens 1986), physical disturbance (Dayton et al 1970, Witman 

1987, Witman and Dayton 2000), recruitment (Smith and Witman 1999), sedimen- 

tation (Witman and Dayton 2000), and current flow (Genovese 1996, Genovese and 
1This chapter been submitted to Ecology Letters for publication. 
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Witman 1999). While the rates of these processes can vary over a range of spatial 

and temporal scales (Witman 1995), there is little information about the effect this 

variation has on successional dynamics and community composition. 

Hill et o/.(2000) recently developed a Markov chain model of subtidal community 

dynamics, based on observations of species succession in ten replicate quadrats mon- 

itored over an eight-year period. To model the community, we subdivided quadrats 

into an array of small patches, each of which is in one of a number of possible states. 

Species or groups of species were identified with states of the Markov chain, and the 

course of succession within patches was defined by a transition matrix A whose (i,j) 

entry gives the probability that a patch in state j changes to state i in one time step. 

The model developed by Hill et al. (2000) is a homogenous Markov chain. It aver- 

ages transition probabilities over small-scale spatial and temporal variability to pro- 

duce the best single realization of a Markov chain for the subtidal community. Patch 

transition probabilities, however, characterize ecological processes (e.g., colonization, 

disturbance, competition, predation, persistence) that are affected by changes in en- 

vironmental conditions. Because homogenous Markov models ignore the effects of 

spatial and temporal variation on transition probabilities, they are inadequate to 

evaluate the effects of environmental change on successional patterns. 

The transition data collected by Hill et al. can be partitioned into categories 

corresponding to specific locations (i.e. quadrat) and time intervals. If multiple tran- 

sition matrices are estimated from counts of observed patch transitions at different 

spatial locations and at different times, then the effects of temporal and spatial vari- 

ability on successional processes can be tested using log-linear models (Bishop et al. 

1975, Caswell 1989, 2000). These models are the more powerful descendants of the 

Anderson and Goodman (1957) model, which was original proposed to test the time- 

homogeneity of Markov chains. The Anderson and Goodman (1957) test has been 

applied to community transition matrices (Tanner et al. 1994; Wootton 2000), how- 

ever, the log-linear approach is more general and can be extended to more complex 
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experimental designs (Caswell 2000). 

Temporal and spatial variability of the environment not only affects the succes- 

sional dynamics of patches, but also the regional dynamics of the community. We can 

characterize the effects of this variability on regional dynamics by examining how the 

relative abundance of subtidal species varies over time and space. This method was 

proposed by Cohen et al. (1998), and involves constructing a series of probability 

matrices describing the distribution of each species among quadrats through time. 

As far as we know, this method has never been applied to an actual data set. 

In this paper we report on the use of log-linear analysis to test for significant 

effects of temporal and spatial variation on patch transition probabilities in the sub- 

tidal community. We use the information from this analysis as a guide for developing 

sets of Markov transition matrices to predict mean species abundances and to char- 

acterize successional dynamics. We also examine the effects of temporal and spatial 

variation on regional dynamics by constructing probability matrices describing the 

distribution of species in space and time. These matrices are analyzed to quantify 

how the spatial distribution of each species varies as a function of time, and how the 

temporal distribution of each species varies as a function of quadrat location (Cohen 

et al. 1998). 

5.2    Methods 

5.2.1    Data collection 

The focus of our study is a community of sessile invertebrates (sponges, sea anemones, 

polychaetes, bryozoans, ascidians) and crustose coralline algae living on rock walls at 

30 - 33 m depth on Ammen Rock Pinnacle in the central Gulf of Maine. The data 

consists of a series of photographs of ten permanent quadrats (each 30 x 20cm2 in 

area) chronicling the spatial distribution of species and bare rock over a eight year 

period (1986 - 1994). The permanent quadrats were photographed at least annually 
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Model States Species Type State Codes 
Bare Rock BR 
Hymedesmia 1 sp. Sponge HY1 
Hymedesmia 2 sp. Sponge HY2 
Myxilla fimbriata Sponge MYX 
Mycale lingua Sponge MYC 
Metridium senile Sea anemone MET 
Urticina crassicornis Sea anemone URT 
Aplidium pallidum 
Ascidia callosa 
Parasmittina jeffreysi 
Idmidronea atlantica 
Spirorbis spirorbis 

Ascidian 
Ascidian 
Bryozoan 
Bryozoan 
Polychaete 

FG 

Crisia eburnea Bryozoan CRI 
Filograna implexa Polychaete FH 
Coralline Algae Encrusting algae COR 

Table 5.1: Subtidal species identified in the nine quadrats located at 30 meters depth 
on Ammen Rock pinnacle in the Gulf of Maine. Species are identified in the model 
using the state codes in the left-hand column. 

with a Nikonos V camera equipped with a 15 mm lens and two strobes mounted on a 

rigid camera frame (quadrapod) as described in Witman (1985). Within a sampling 

period, each quadrat was treated as an independent replicate, because individual 

quadrats were separated by a horizontal distance of 1 to 5 meters. 

A total of 14 species, each occupying at least 0.5% of the study area, were recorded 

in the quadrats. We grouped these species into 11 different state categories (table 

5.1). We chose to combine the ascidians, Aplidium and Ascidia, the bryozoans, Paras- 

mittina and Idmidronea, and the polychaete Spirorbis into a single functional group 

based on an objective analysis showing a high level of functional similarity among 

these species. Function similarity is measured by the role these species play in com- 

munity dynamics (see Hill et al. 2000 for details). 

Transition data were obtained by superimposing a lattice of evenly spaced points 
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over quadrat photographs and following the state of each point through time. Ap- 

proximately 600 points (a single point every 1 cm) were assayed per quadrat. We 

chose this scale because it was approximately equivalent to the size of the smallest 

organism in our data set. For simplicity we will refer to each point as a patch, where 

the size of a patch is taken to be 1 cm2. Since individuals from many of the subtidal 

species are capable of growing much larger than 1 cm2, a single individual can occupy 

more than one patch. 

5.2.2    Statistical Analysis 

The observed transition data form a four-way contingency table N, in which patches 

are classified by their state (S) at time t, their fate (F) at time t+1, the time (T) of 

the observation, and the location (L) of the quadrat. The entry n^i in cell (ijkl) of 

the table gives the number of patches making the transition from state i to fate j at 

time k in location I (Caswell 2000). 

To evaluate the significance of temporal and spatial heterogeneity in the transition 

data, we used log-linear analysis (Bishop et al. 1975, Caswell 1989, 2000). In log- 

linear analysis the logarithm of the cell frequencies of N is modeled as a linear function 

of the effects of F, S, T, L, and their interactions. The significance of the effects of 

time, location, and their interaction are evaluated by comparing the likelihood of 

models including progressively more interactions. 

The null hypothesis in tests for differences among Markov chains is one of condi- 

tional independence: given the initial state (£), the fate (F) of a patch is independent 

of time and location (Bishop et al. 1975). Because we consider only hierarchical mod- 

els, the null model is denoted FS, STL; which implies that the cell frequencies are 

modeled as a function of the effects of FS and STL, plus the effects of ST, SL, TL, 

S, T, and L (see the appendix for details). 

The effects of time and location on transition probabilities can be tested in several 

ways as shown in figure 5.1. Beginning with the null hypothesis FS,STL at the top 
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of the figure, we add location effects by including the terms FL and FSL. Then- 

effect is evaluated by comparing the models FS,STL and FSL,STL. Similarly, we 

add time effects to the null model by including the terms FT and FST and evaluate 

their effects by comparing the models FS,STL and FST,STL (Caswell 2000). 

We can also test for the effects of location by adding the terms FL and FSL to 

the model that includes the time effects and comparing the models FSL,STL and 

FSL,FST,STL. Similarly, we can test for the effects of time by adding the terms FT 

and FST to the model that includes the location effects and comparing the models 

FST,STL and FSL,FST,STL. Finally, we test for the effects of time and location 

by comparing the models FSL, FST, STL and FSTL (Caswell 2000). 

The goodness-of-fit of a model is measured using the log-likelihood ratio statistic 

G2 which is asymptotically distributed as x2 with degrees of freedom equal to the 

difference between the number of cells in N and the number of parameters in the 

model. The goodness-of-fit test compares a model to the saturated model FSLT, 

which fits the data exactly. Tests of a specific interaction are assessed by examining 

the difference in G2 values (AG2) between models that include and exclude that 

interaction. The likelihood statistic AG2 is distributed as x2 with degrees of freedom 

equal to the difference between the degrees of freedom for the two models (Caswell 

2000). 

Increasing the number of parameters in a log-linear model will always produce a 

better fit to the data. To determine which model best approximates the mechanisms 

generating the transition data we used the Akaike Information Criteria (AIC)(Akaike 

1973; Burnham and Anderson 1998). For log-linear models AIC is defined as 

AIC = G2- 2(df) (5.1) 

(Christensen 1990) where G2 is the goodness of fit likelihood statistic and df is the de- 

grees of freedom of the model. The log-linear model that minimizes AIC is considered 

the most parsimonious, best-fitting model (Burnham and Anderson 1998). 
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5.3 Results:   The effects of time and location on 

patch succession 

A graphic representation of the results of statistical tests for the effects of time and 

location on transition data in the subtidal community is shown in Figure 5.1. The 

effect of location is highly significant whether it is evaluated with the effect of time 

excluded or included in the analysis. Time is also highly significant whether or not 

location is excluded or included in the analysis. The interaction of time and location, 

however, is not significant (P = 0.998). 

Comparison of AIC values shows that the best model is FST, FSL, STL (AIC = 

—7566.2). Thus both location and time have important affects on patch transitions in 

rocky subtidal communities. Incorporation of a time x location interaction, however, 

is unnecessary to explain observed patch transition patterns. Note that the model 

FST, FSL has a much lower AIC value than FST, FST, indicating that location 

has a larger effect on transition probabilities than time. 

5.4 Markov chain models:   Species composition 

and community dynamics 

Species composition and successional dynamics in the rocky subtidal community can 

be studied using Markov chain models. The log-linear analysis suggests that these 

models should incorporate the variability in patch transitions associated with time and 

location, without including a time x location interaction. To explore the implication 

of these results we constructed three sets of transition matrices: 1. a set of 10 spatial 

matrices in which the effects of time are ignored, 2. a set of 8 time-varying matrices in 

which the effects of space are ignored, and 3. a set consisting of a single homogeneous 

matrix in which temporal and spatial effects are ignored. 

Let «S represent the set of spatially-varying transition matrices, and let S^ denote 
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FT.FST 
AG2 = 4356.5 
Adf = 770 
p < 0.0001 

FS, STL 
G2 = 17,196.1 
df=7810 
AIC = 1576.1 FL.FSL 

AG2 = 7248.1 
Adf=880 
p < 0.0001 

FST, STL 
G2 = 12,839.6 
df = 7040 
AIC =-1240.4 

FSL, STL 
G2 = 9,948.0 
df = 6930 
AIC = -3912.0 

FL.FSL 
AG2 = 7011.6 
Adf = 880 
p < 0.0001 FST.FSL, STL 

G2= 5,828.5 
df = 6160 
AIC = -6491.6 

FT.FST 
AG2 = 4119.5 
Adf =880 
p < 0.0001 

FTL.FSTL 
AG2 = 5,828.5 
Adf =6160 
P = 0.9998 

FSTL 
G2=0 
df=0 
AIC = 0 

Figure 5.1: Tests for the effects of time (T) and location (L) in a loglinear analysis of 
the subtidal transition data. Each box designates a particular model, its goodness- 
of-fit G2 statistic, its degrees of freedom, and its AIC value. The top box gives the 
results for the null model (Fate is dependent only on State). The lower boxes represent 
models that include higher order interactions between Fate and T, L, or both. Terms 
added to each model along with the corresponding changes in G2 (AG2) and degrees 
of freedom are shown along the arrows. 
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the Zth matrix in «S. The element s\j of S^ gives the probability that a patch in state 

j will be in state i the following year, in quadrat I. The transition probabilities for 

S^ are estimated as 
s(l) _      Efc nijkl ,^ 2x 

12i Sjfc nijkl 

where n^-fc/ is the number of patches that change from state j to state i at time k in 

location I. 

Similarly, let T represent the set of time-varying transition matrices, and let T^) 

denote the fcth matrix in T. The transition probabilities for T^fc^ are estimated as 

EL 

lij I - ^S^L-       • y°-6) 
Lsi l^il  nijkl 

Finally, let A denote the homogeneous transition matrix. The transition proba- 

bilities for A are estimated as 

%• = J^lT1   ■ (5-4) 

5.4.1    Equilibrium Predictions 

To examine what the effects of temporal and spatial variation are on equilibrium 

predictions, we compared: 

• the equilibrium distribution that would result if each of the quadrat-specific 

matrices in the set (<S) were treated as a homogenous Markov chain, with the 

observed species distribution in each quadrat. 

• the equilibrium distribution that would result if each of the time-specific ma- 

trices in the set (T) were treated as a homogenous Markov chain, with the 

observed species distribution at each time. 

• the equilibrium distribution for the homogenous Markov chain A with the ob- 

served species distribution averaged over time and space. 
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Note that the eqmlibrium predictions of the different sets of Markov chains depend 

exclusively on the transition probabilities measured in the data set, which are inde- 

pendent of observed species abundances in the quadrats (see for example Horn 1975). 

Comparing predicted and observed abundances provides insights into how small-scale 

temporal and spatial variation in transition processes affect the ability of Markov 

chain models to predict community composition. 

The equilibrium distribution of a Markov chain is calculated using eigenanalysis. 

Let Mfc be the fcth matrix within the set of spatially-vary (temporally-varying) tran- 

sition matrices. If Mfc is primitive, its largest eigenvalue equals 1. The corresponding 

eigenvector zk (i.e. the dominant eigenvector) gives the eqmlibrium distribution of 

patch states, to which the community would converge if the transition probabilities 

specified by M& remained constant. 

If u; is the dominant eigenvector of S(i), then the mean equihbrium distribution 

for the set S is 

L 1=1 

where L = 10. Similarly, if vfc is the dominant eigenvector of T(fc), then the mean 

equilibrium distribution for the set T is 

v=^I> (5-6) 

where T = 8. Finally, the equilibrium distribution for homogenous transition matrix 

is given by the dominant eigenvector of A, which we shall denote as w. To measure 

the variance in the equilibrium distributions for the sets «S and T, we calculated the 

variance in each element of u^ and V&. 

We can quantify the abilifty of the by comparing The equihbrium predictions of 

the different sets of Markov chains depend exclusively on the transition probabilities 

measured in the data set and not on the initial abundances of species in the quadrats 

(see for example Horn 1975). 
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Figure 5.2 shows comparisons of the equiHbrium species distribution predicted by 

the Markov chains vs. relative species abundance within the quadrats. Fig. 5.2a 

compares the mean eqmlibrium distribution for the set of spatially-varying transition 

matrices (ü) with the mean value of the average relative species abundance in each 

quadrat between 1986 and 1994. The agreement is excellent. Figure 5.2b compares 

predicted (uj I = 1,..., L) and observed relative abundances, over all species and all 

quadrats. The correlation is rp = 0.94, p < 0.001. Comparisons of the equilibrium 

distributions for the set of temporally-varying transition matrices (fig. 5.2c, d), and 

the homogenous transition matrix (fig. 5.2e, f) with observed species abundances 

yield similar results. This last result indicates that homogenous Markov chains can 

accurately predict community composition in the rocky subtidal zone. Thus while 

temporal and spatial variation is statistically significant, the effect on predicted abun- 

dances is biologically trivial. 

5.4.2    Community Dynamics 

Pooling transition data and eigenvector analyses provide information on long-term 

trends in species abundances, but tell us little about community dynamics. Here, we 

illustrate how temporal variation in transition probabilities affect community dynam- 

ics, using the set of time-varying transition matrices to model community dynamics 

as a non-homogenous Markov chain. 

The general form for the non-homogenous Markov chain is given by 

x(t + l)   =   Atx(t) 

=   AtAt_1At_2...A1x(0) (5.7) 

where x(t) is a column vector giving the probability distribution of patch states at 

time t, x(0) is some initial distribution of patch states, and the sequential product 

Ai, A2,.. •, At represents a single stochastic realization of the environment. 
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PRED. 

Figure 5.2: Predicted vs. observed species frequencies. Quadrat-specific transi- 
tion matrices S: a. Equilibrium distribution specified by the set of quadrat-specific 
transition matrices u vs. the mean observed species distribution in each quadrat, 
averaged over space (error bars represent 1 SD). b. Equilibrium distribution specified 
for each quadrat Ufc (k = 1,..., L) as a function of the observed species distribution 
in each quadrat (rp = 0.94, p < 0.001). Time-specific transition matrices T: c. 
Equilibrium distribution specified by the set of time-specific transition matrices v vs. 
the mean observed species distribution in each year, averaged over time. d. Equilib- 
rium distribution specified for each time interval v& (k = 1,... ,T) as a function of 
the observed species frequencies at each year (rp = 0.98, p < 0.001). Homogeneous 
transition matrix: e. and /. Equilibrium distribution specified by the dominant 
eigenvalue of A vs. the observed species distribution averaged over time and space 
(rp = 0.99, p < 0.001). 
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The dynamics of the community depend on the sequential ordering of the matrices 

At. If we assume that the matrices At (t = 1,..., oo) are drawn from the set T then 

the sequence of transition matrices in equation 5.7 can be described by a column- 

stochastic transition matrix P, whose (i,j) entry is 

pü = P(Aw.1 = TW|(At = TÜ>) (5.8) 

(Caswell 2000). 

We simulated community dynamics using for two different types of environmental 

variability to specify the sequence of matrices in equation 5.7. 

• Periodic environment; in which the sequence of transition matrices T^ was 

specified by the matrix 

P = 

/ 0 0 0 

1 0 0 

0 1 0 

0 0 1 

\0   0   0 

0  i\ 

0 0 

0 0 

0   0 

1   0 

(5.9) 

Stochastic environment; in which the sequence of transition matrices T^ were 

chosen independently and with equal probability; i.e. according to the matrix 

/ 

P = 

V   8      8 

1   \ 
8 

\J 

(5.10) 

Community dynamics specified by the non-homogeneous Markov chain for the 
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Time 

Figure 5.3: Simulated realizations of the non-homogeneous Markov chain showing the 
transient dynamics of Hymedesmia 1, Crisia, Myxilla, Mycale, and Bare Rock in a 
periodic and stochastic environment. 

five most abundant states, Hymedesmia 1, Crisia, Myxilla, Mycale, and Bare Rock, 

are shown in figure 5.3. Simulations in both environments predict that species abun- 

dances are highly variable through time, with frequent switches in dominance between 

Hymedesmia 1 and Crisia (where dominance refers to the species with the greatest 

abundance in the community). 

Figure 5.4 shows frequency distributions of dominance times for Hymedesmia 1 

(fig. 5.4a) and Crisia (fig. 5.4b). Dominance time refers to a continuous length 

of time in which species i (i = HY1 or CRI) is the most abundant species in the 

community. The median dominance time for Hymedesmia 1 is three years, with a 

range of 1 to 19 years. The median dominance time for Crisia is one year, with a 

range of 1 to 7 years. 

Table 5.2 lists temporal correlations between the abundances of several subtidal 

species with Hymedesmia 1 and Crisia. The pattern of correlations indicates that the 

composition of the community changes depending on which species, Hymedesmia 1 
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Figure 5.4: Frequency distribution of. the dominance time of Hymedesmia 1 and 
Crisia. Results are based on 10,000 stochastic iterations of the non-homogeneous 
Markov chain using the stochastic environment. 

HY1 CRI 
BR 0.256 -0.880 
HY1 -0.557 
HY2 0.304 -0.110* 
MYX 0.114* -0.499 
CRI -0.557 
FG 0.270 -0.510 
COR 0.237 -0.713 

Table 5.2: Product-moment correlation coefficients rp for the temporally-varying 
Markov chain. The second and third columns of the table show rp values for 
Hymedesmia 1 (HYM 1) and Crisia (CRI) vs. the states listed in the first column. 
Correlations are based on 10,000 iterations of the non-homogenous Markov chain in 
the stochastic environment. All correlations are significant at the p < 0.01 level 
except where marked by a *, in which case p < 0.05. 

or Crisia, is most abundant. Since Hymedesmia 1 and Crisia oscillate out of phase 

with each other (Fig. 5.3), the correlation analysis suggests that species composition 

switches between two points in community phase space. 
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Figure 5.5: Comparison of the long-term temporal average of species abundance for 
the non-homogeneous Markov chain (x) and the equilibrium distribution (w predicted 
by the homogenous Markov chain. Averages for the non-homogeneous Markov chain 
are based on 10,000 iterations in the stochastic environment (the periodic environment 
gives similar results). Error bars represent 1 SD. 

The long-term temporal average of the species composition for the non-homogeneous 

Markov chain can be calculated as 

1   * 
x = lim - ^ Xfc (5.11) 

where x^ is a vector whose jih element is the abundance of species j at time k. Figure 

5.5 compares x with the equilibrium distribution, w, for the homogenous Markov 

chain. In general, there is no difference in the predicted mean species abundances 

between these methods of calculation. 

The temporal and spatial variations in transition probabilities, as measured by 

log-linear analysis, reflect the highly dynamic nature of species succession in the 

subtidal community. The effects of this variation on community dynamics cannot be 

understood through eigenanalysis, but instead require stochastic realizations of time- 
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and/or spatial-varying Markov chain to examine the behavior of the community. The 

average species composition of the community (over long time scales), however, can 

be obtained either from the dominant eigenvector of the homogeneous Markov chain 

A or by simulating the non-homogenous Markov chain specified by the matrices X 

and then applying equation 5.11. 

5.5    Temporal and spatial variability in species dis- 

tributions 

We have shown that transition probabilities and community dynamics vary signifi- 

cantly in time and space, but what about the relative spatial and temporal distri- 

bution of individual species? To answer this question we employed a method for 

comparing stochastic matrices introduced by Cohen et al. (1998). The general idea 

is to construct a set of probability matrices Ai, in which the Arth matrix of the set 

(M*;) describes the distribution of species k among locations (time periods) at each 

time period (location). Variations in the spatial (temporal) distribution of species A; 

is assesses by measuring the mutual distance between the columns of M^. 

Let Q be a 3 dimensional array, where the (s,l,t) element of Q is the number of 

patches containing species s, at location I, at time t. For each species s, we define the 

LxT column stochastic matrix As with elements As(l,t) = Q(s,I,t)/ (£)jQ(s,I,£)), 

and the TxL column stochastic matrix Bs with elements Bs(£, I) = Q(s, I, t)/ (J2t Q(s> ^ *))■ 

Column t of As is the probability distribution over locations of species s at time t. 

If the columns of As are nearly identical then there is little temporal variation in 

the spatial distribution of species s (i.e. relative abundances of species s within the 

quadrats are similar over time). Column I of Bs is the probability distribution over 

time of the abundance of species s at location I. If the columns of Bs are nearly 

identical then there is little spatial variation in the temporal distribution of species s 

(i.e. relative abundances of species s over time are similar between the quadrats). 
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We can assess the mutual distance between columns in any probability matrix M 

using Dobrushin's coefficient of ergodicity 

ä(M) = -max||m:j - m:fc||p (5.12) 

(Dobrushin 1956a,b), where m:j is the jth. column of M and ||x||p = (£ |x|p)1/p is the 

p norm (jp > 1) for the vector x. Calculating 5(AS) (s = 1, ..., 12) gives a measure 

of how much the spatial distribution patterns of species s varies in time. Calculating 

ä(Bs) gives a measure of how much the temporal distribution patterns of species s 

varies among locations. 

Figure 5.6 shows ä(As) and ö(Bs) values for all 11 species states. The species with 

the greatest temporal variation in their spatial distribution patterns are Hymedesmia 

2, Metridium, and Filograna (fig. 5.6a). The species with the greatest spatial vari- 

ation in their temporal distribution patterns are Hymedesmia 2, Mycale, Metridium, 

Urticina, Crisia, Filograna and coralline algae (fig. 5.6b). Note that the spatial vari- 

ation in the temporal distribution of Bare Rock is also relatively high. If we assume 

that the frequency of Bare Rock is correlated with levels of predation and on rock 

wall invertebrates, then this result suggest that the temporal frequency of predator 

attacks (and other forms of disturbance) is relatively variable in space. Finally, figure 

5.6 shows that the relative variability in the abundance of Hymedesmia 1, Myxilla, 

and the functional group species (FG) are both temporally and spatially stable. 

5.6    Discussion 

To evaluate the significance of temporal and spatial heterogeneity in patch transition 

processes in a rocky subtidal community, we used log-linear analysis of the observed 

transition frequency tables. These models are the more powerful descendants of 

the original Anderson and Goodman (1957) test, which were introduced to test the 

time-homogeneity of Markov chains.   While this test has been applied to matrix 
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Figure 5.6: Temporal and spatial variability of relative species abundances in the 
rocky subtidal convmunity. Results are shown using the 1 norm and the 2 norm 
to calculate Dobrushin's coefficient of ergodicity (see text for details). a. Temporal 
variation in the spatial distribution of each species. A species with a low value of 5(A) 
has a spatial pattern of relative abundance that varies less in time than a species with 
a high value of a (A). b. Spatial variation in the temporal distribution of each species. 
A species with a low value of ö(B) has a temporal pattern of relative abundance that 
varies less among quadrats than a species with a high value of ä(A). 
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population models (Bierzychudek 1982; Cochran 1986) and community transition 

matrices (Tanner et al. 1994), the log-linear approach is more general and can be 

extended to more complex experimental designs (Caswell 2000). The Anderson and 

Goodman test is a likelihood ratio test for comparing the effects of a single factor (e.g. 

time) on transition probabilities. In essence, using it to investigate a more complex 

experimental design is analogous to using all possible pair wise t-tests in place of 

an ANOVA. While some authors continue to use the Anderson and Goodman test to 

develop community Markov chains, it is not an appropriate method for characterizing 

the effects of time and space on transition probabilities, and should be retired. 

A log-linear analysis showed that patch transition probabilities varied significantly 

between locations and between years. Such variation can result from stochastic 

processes such as environmentally induced fluctuations in recruitment, or determin- 

istic processes such as density- and spatial-dependent species interaction effects. The 

importance of including temporal and spatial variation in a model of the subtidal 

community, however, depends on the questions being asked. If we are interested in 

predicting long term trends in community composition, over large spatial areas, then 

a homogenous Markov chain (formed by pooling all the transition data across time 

and space) should provide adequate estimates of average species densities. On the 

other hand, if we want to understand the biological processes that drive transient 

dynamics in communities, then we need to develop Markov chains that incorporate 

processes affecting patch transition probabilities over smaller spatial and temporal 

scales. 

In communities with many species it is important to quantify how the distribution 

of each species varies over time and space. The methods of Cohen et al. (1998) 

provide a simple but effective way of characterizing the spatial and temporal stability 

of individual species relative to other organisms in the community. For example in 

the subtidal community, the two dominant species, Hymedesmia 1 and Crisia, show 

somewhat different stability patterns.  The distribution of Hymedesmia 1 is highly 
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stable both temporally and spatially, suggesting that fluctuations in its abundance 

are highly synchronized across large spatial scales. The temporal distribution of 

Crisia, on the other hand, tends to vary a lot over small spatial scales, indicating 

that Crisia is more affected by changes in local conditions than Hymedesmia 1. 

Figure 5.6 shows that there is more variability between quadrats in the temporal 

distribution of species, than there is over time in the spatial distribution of species. 

This result suggests location has a greater effect on species distribution than time 

and is consistent with the log-linear analysis, which shows a greater effect of space on 

transition probabilities (excluding FT effects has a lower AIC value than excluding 

FL, Fig. 1). Testing for differences in the variability of species distribution, however, 

is only a qualitative test, and is not as statistically rigorous as log-linear analysis. To 

put Cohen's approach into practice will require the development of statistical tests. 

Such tests can be developed using analytical methods, resampling techniques and 

randomization procedures (Cohen et. al. 1998). 

One of our goals is to understand the relative extent to which deterministic forces 

are responsible for spatial and temporal fluctuations in the transition probabilities. 

To do this we are currently developing maximum likelihood methods to identify tran- 

sitions whose values are dependent on species densities. We are using these methods 

to develop a nonlinear Markov chain model of the subtidal community in order to 

study long term community dynamics, look for multiple stable states and nonlin- 

ear dynamics, and examine whether species can be competitively excluded from the 

community (Hill, M., J.D. Witman and H. Caswell, in prep.). 
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Appendix 

In log-linear analysis the log of the cell frequencies in N (n^z) is modeled as a linear 

function of the effects of F, S, T, L, and their interactions. The null hypothesis is 

one of conditional independence: given the initial state, the fate is independent of 

time and location. The resulting model for the null hypothesis is 

log Uijkl    =    U + UF{i) + US(j) + UT{k) + UL(l) 

+UFS(ij) + V>ST(ik) + UsL(jl) + UTL(kl) 

+USTL(jkl) (5-13) 

where u is the log of the total number of transitions in the table, us(j) represents the 

effect that the jth initial state has on the cell frequencies in N, upsdj) represents the 

effect that the interaction of the jth initial state and the ith fate have on the cell 

frequencies in N, etc. 

To test the effect of location, we add the effect of time to the null model by 

including the terms upT(ik) and upsTfäk) 

log Uijkl    =    U + UF(i) + Us(j) + UT(k) + UL(l) 

+UFS(ij) + UST{ik) + UsL(jl) + UTL(kl) 

+UFT(ik) + UpST(ijk) + USTL(jkl), (5-14) 

which gives the model FST, STL. To test the effect of time, we add the effect of 

location to the null model by including the terms upi^u) and upsL(iji) 

log nijki   =   u + uF(i) + uS(j) + uT{k) + UL(1) 

+UFS(ij) + UsT(ik) + USL(jl) + uTL(kl) 

+UFL(il) + UFSL{ijl) + UsTL{jkl)i (5.15) 
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which gives the model FSL, STL. Finally, to test for the effects of time and location 

we use the model FST, FSL, STL 

log nijki   =   u + v,F(i) + uS(j) + uT(k) + uL(i) 

+UFS(ij) + UFT(ik) + UpL(il) + UST(jk) + V>SL(jl) + uTL(kl) 

+UFST(ijk) + UFSL(ijl) + UsTL(jkl) (5.16) 

The parameters for all models are estimated by maximum likelihood methods. See 

Caswell (2000) for a general discussion of this methodology or Silva, Raventos and 

Caswell (1991) for an example in a demographic study. 
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Chapter 6 

A Nonlinear Markov Chain of a 
Rocky Subtidal Community: 
Quantifying the effects of species 
interactions on community 
dynamics 

The community stagnates without the impulse of the individual. The im- 

pulse dies away without the sympathy of the community 

-William James 

6.1    Introduction 

Nonlinear species interactions can have important consequences for the structure and 

dynamics of natural communities (Lawton 1992; Paine 1992; McCann et al. 1998). 

Numerous models have shown that nonlinearities in population growth rates and 

interspecific interactions can give rise to chaotic dynamics (e.g. Gilpin 1979; Hastings 

and Powell 1991; Kot et al 1992; Caswell and Neubert 1998), and that community 

stability is dependent on the number and strength of these interactions (May 1973; 

McCann et al. 1998). 

In marine benthic communities, nonlinearities can arise from density-dependent 
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effects on larval settlement (Planes et al. 1998;), post-settlement mortality (Weiss 

1948; Connell 1985; Zajac et al 1989; McShane 1991), and competition for space be- 

tween adults (Grant 1977; Denley and Underwood 1979; Sebens 1985,1986; Bertness 

1989; Witman and Dayton 2000). Most empirical studies attempting to quantify the 

effects of species interactions on the dynamics of benthic systems typically involve 

only one or a few sessile species (e.g., Davis 1988, Raimondi 1990, Minchinton and 

Scheibling 1991). Paine (1992) proposed measuring per capita interaction strengths 

among species through a series of species removal experiments. As an alternative, we 

propose to estimate interaction strengths using Markov chain models. 

Markov chains provide a statistical approach to modeling community dynamics 

in marine systems and have been used to characterize successional change in coral 

reef communities (Tanneret al. 1994, 1996), subtidal communities (Hill et al. 2000), 

and intertidal communities (Wootton 2000). A Markov chain describes a community 

as a landscape of patches, each of which is in one of a number of possible states. 

States are defined by the presence of an individual of a given species or species group 

(functional group). The model is based on a transition matrix A, whose (i,j) entry 

gives the probability that a patch in state j changes to state i in one time step. Most 

applications of Markov chains to marine and terrestrial communities have been limited 

to linear models, in which transition probabilities are assumed to remain constant over 

time (e.g. Waggoner and Stephens 1970, Horn 1975, Usher 1979, Acevedo 1982, Salia 

and Erxini 1987, Grant et. al. 1988, Isagi and Nakagoshi 1990, Masaki et al. 1992, 

Rego et al. 1993, Tanner et al. 1994,1996, Formacion and Salia 1994, Hill et al. 

2000). 

A Markov chain can incorporate effects of species interactions on patch succession 

by allowing transition probabilities to depend on species densities (Caswell and Cohen 

1991a,b, 1995, Barradas and Cohen 1994, Barradas et al. 1996). If x(t) is a vector 

whose ith element gives the proportion of the landscape occupied by state i at time 
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t, then the dynamics of the community over time is given by 

x(t + 1) = Axx(t) (6.1) 

where the subscript on Ax means that the elements of the transition matrix, a,ij(xt), 

are functions of the state densities at time t. These functions, must take into account 

the requirement that Ax is always nonnegative (i.e. o^x*) > 0; V t > 0) and that 

each column of Ax always sums to 1 (Ax is column-stochastic). 

Nonlinear Markov chain models for simple communities have been studied theoret- 

ically by Caswell and Cohen (1991a,b, 1993,1995), and Barradas et al. (1996). Those 

models described various models for competition, succession, predator-mediated co- 

existence, and local and regional determination of species richness. However, we know 

of no attempt to apply this theory to data on real communities (Although Cornell 

and Karlson (1997) have invoked some of it to explain patterns of species diversity in 

coral reef communities). 

In this paper we develop a nonlinear Markov chain of a rocky subtidal community 

to study the effects of species interactions on community dynamics. We derive maxi- 

mum likelihood methods to estimate density-dependent transition probabilities from 

spatial time series data. The data for our model comes from permanent quadrats 

monitored over an 8-year period of epifaunal invertebrate communities living on sub- 

tidal rock walls in the Gulf of Maine. We study the dynamics of the model using 

numerical simulation, characterizing the behavior of the community starting from 

a large set of initial conditions. We also parameterize nonlinear Markov chains by 

calculating species densities at different spatial scales, to study the dependence of 

interactions strengths on neighborhood size. Finally, we use bifurcation analysis to 

characterize how changes in the strength of the interactions among species affect the 

temporal dynamics of the community. 
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Model States Species Type 
Bare Rock 
Hymedesmia 1 sp. Sponge 
Hymedesmia 2 sp. Sponge 
Myxilla fimbriata Sponge 
Mycale lingua Sponge 
Metridium senile Sea anemone 
Urticina crassicornis Sea anemone 
Aplidium pallidum Ascidian 
Ascidia callosa Ascidian 
Parasmittina jeffreysi Bryozoan 
Idmidronea atlantica Bryozoan 
Crisia eburnea Bryozoan 
Filograna implexa Polychaete 
Spirorbis spirorbis Polychaete 
Coralline Algae Encrusting algae 

Table 6.1: Invertebrate species identified in the photo quadrat data set. These species 
were originally used by Hill et al. (2000) to develop a linear Markov chain of a rocky 
subtidal community. 

6.2    Data collection 

The focus of our study is a vertical rock wall community located at approximately 30 

meters depth on Ammen Rock Pinnacle in the Gulf of Maine (Witman and Sebens 

1988; Leichter and Witman 1997). The data for our model were collected over an 

eight-year period (1986-1994). They consist of a series of photographs chronicling the 

spatial distribution of sessile species on the rock wall substrate through time. Ten 

replicate quadrats, positioned randomly along a 20 meter span of rock wall habitat 

were photographed at least yearly with a Nikonos V mounted on a quadrapod camera 

frame (as in Witman 1985; Cayer et al. 1999). Color prints were made of the 

high resolution color slides to identify the species of five major taxa of epifaunal 

invertebrates (sponges, sea anemones, ascidians, bryozoans, and polychaetes). A 

total of 14 species were recorded in the quadrats (Table 6.1). 

This community has already been described by several authors (e.g., Osman 1977, 
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Model States State Codes 
Hymedesmia 1 sp. HYM 
Myxilla fimbriata MYX 
Mycale lingua MYC 
Metridium senile 
Urticina crassicornis 

SEA 

Crisia eburnea CRI 
Filograna implexa FIL 
Aplidium pallidum 
Ascidia callosa 
Parasmittina jeffreysi 
Idmidronea atlantica 
Spirorbis spirorbis 

FG 

Bare Rock BR 

Table 6.2: Species groups used to develop the nonlinear Markov chain. Species groups 
are identified in the model using the state codes in the right-hand column of the table. 

Ayling 1981, Russ 1982, Duggins 1983, Sebens 1985,1986, Witman 1985,1987,1996, 

Scheibling and Hennigar 1997, Witman and Dayton 2000) and modeled as a linear 

Markov chain by Hill et al. (2000a). In the linear model five species were combined 

into a single group (Aplidium, Ascidia, Parasmittina, Idmidronea, and Spirorbis) as 

they were shown to perform functionally similar roles in community dynamics (see 

Hill et al. 2000 for details). In this paper we reduced the state space further by 

eliminating two species (Hymedesmia 2 and coralline algae) from the data set (due to 

their low abundance) and combining the sea anemones, Metridium senile and Urticina 

crassicornis, into a single group. Thus the state space for the nonlinear Markov chain 

consists of 7 species states, plus a bare rock state representing empty patches (table 

6.2). 

Data for the analysis were obtained by superimposing a lattice of evenly spaced 

points over quadrat photographs and following state transitions at each point through 

time. Approximately 600 points (a single point every 1 cm) were assayed per quadrat. 

We chose this scale because it was approximately equivalent to the size of the smallest 
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Prom 
 HYM      MXY      MYC     SEA   CRI   FIL   FG      BR 

To: HYM    au(xt)    oi2(xt)    oi3(xt)        ais(xt) 
MXY    a21(xt)    a22(xt)    a23(xt)        a2s(xt) 
MYC    a3i(xt)    a32(xt)    a33(xt)        a3S(xt) 

SEA       ;;;••. ; 
cRi       ; ; ; •. ; 
FiL       ; ; : ••. ; 

FG        ; : ; •-. .   ; 

_^BR       a5i(xt)    ag2(xf)    assist)       ass(xt)_ 

Table 6.3: Schematic representation of the transition matrix for the nonlinear Markov 
chain. The vectors xt in the matrix indicate that the transition probabilities are 
functions of the states densities at time t. 

organism in our data set. For simplicity we will refer to each point as a patch, where 

the size of a patch is taken to be 1 cm2. Since individuals of many of the subtidal 

species are capable of growing much larger than 1 cm2, a single individual can occupy 

more than one patch. 

6.3    A nonlinear Markov chain model 

A nonlinear Markov chain is based on a matrix of density-dependent transition prob- 

abilities. The matrix is arranged so that column j represents transitions from state 

j at time t to states i, i = 1,..., S, at time t + 1. The form of the transition matrix 

for the subtidal community is shown in table 6.3. 

Estimating the dependence of transition probabilities on species densities requires 

a flexible functional form and a procedure to estimate the parameters in the function. 

Multiple logistic regression is a familiar method for describing a binary outcome as a 

function of a set of independent variables. Here, we use the generalization of logistic 

regression to polychotomous variables describing multiple outcomes (e.g. Cox 1970, 

Hosmer and Lemeshow 1989). 
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Suppose there axe multiple outcomes for some event with probabilities qit i = 

1,..., S, and associated with each outcome is a vector z of independent variables and 

a vector of parameters bj. Polychotomous logistic regression defines a logit function 

for each of the possible outcomes. To ensure that the resulting set of probabilities 

sum to one, we write logit functions by specifying one of the outcomes as a reference 

value. If we let qs be the reference outcome, then the logit function for qt is 

In —   =   b0ti + &i iZi H = +bs,iZS 
Qs 

=   (bi,a> (6-2) 

where the first element (z0) of z = 1 and (b», z) represents the scalar product of the 

two vectors. The parameter &o is a constant, which is unaffected by changes in the 

independent variables. Using the fact that £i & = 1, it follows that the probability 

of outcome i is 

? I    l+E,     exp«^» (63) 

k i+£riexp(<b'-'z>) 't= 

To develop a nonlinear Markov chain, we treat the probabilities of all transitions 

from state j (i.e column j of A^) as a polychotomous logistic regression problem. 

The vector of independent variables is z = [l,x]T, where x is the vector of species 

densities and the probability qi is the matrix entry Oy(x). Since we are interested 

in the effects of species interactions on transition probabilities, we use the bare rock 

state, BR, as the reference outcome. 

Let t>P be the vector of parameters associated with the probability of changing 

form state ]th to state i in a single time step. The set of functions a^ (x) in the jth 
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column of A are given by 

exp (W) 
Oy(x)    =    < i+J2t lfxp 

ift<5 

ifi = 5 
(6.4) 

Note that the logistic function can range from nearly Hnear (no effect of density) 

to having a sharp threshold in the density effects. It is also flexible enough to rep- 

resent both positive and negative density effects. Positive effects might result from 

gregarious settlement or from local reproduction; negative effects from competitive 

interactions. 

6.4    Methods 

6.4.1    Parameter estimation 

The transition probabilities are estimated from data on the number of patches that 

change from state j at time t to state i at time t + 1, and the densities of the various 

states in each quadrat at time t. The density of state i within a quadrat is the number 

of patches occupied by state i divided by the total number of quadrat patches. 

Let B^) be a matrix associated, with the jth column of A, whose ith row (denoted 

B^) is the vector b^ . The elements of B^ are estimated by maximum likelihood 

methods. The likelihood function is 

T    L 

L(B^|Data) = niI 
t=i i=i 

(6.5) 
,l + E£-W((BifUt)). 

where T is the number of time intervals, L is the number of quadrats, zit is a vector of 
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species densities in quadrat I at time t, and N^t is the number of patches that change 

from state j to state i in quadrat I within the interval (t, t + 1). This function insures 

that the probabilities in each column of Ax always sum to one, and all possible pairs 

of probabilities have a logistic relationship (Cox 1970). 

The log-likelihood is 

lnL(B^|Data) = ££ ^(B^ - **) + • • • 
t=i 1=1 

+JV(5-i),i,t(BgL1) - **) - Nsu$lt (6.6) 

where $jt = ln{l + E^exp ((Bfc)z*t))}- Tne values of the coefficients in Bü) that 

maximize (6.6), are the maximum likelihood estimates of the model parameters in 

column j. This process is repeated for each column of Ax. 

6.4.2    Set of candidate models 

The set of models we fit to the data represent different hypotheses regarding the 

number of species interactions affecting the replacement of species j by species i. 

These include a model with no species interactions (M0), plus a set of models in 

which each ay(x) in column j is a function of the density of a single species (Mx), 

of two species (M2), of three species (M3), etc. The number of parameters estimated 

for each column of Ax depends on which model we are fitting to the data (table 6.4). 

The maximum number of parameters is (S + 1) x (S — 1). This corresponds to the 

situation in which each aij(x.) in column j is a function of the densities of all the 

species in the community (model Mg). 

For a given model, Mh h = 0,..., 8, we used the MATLAB routine fminu to find 

parameter values that maximized the likelihood function (Eq. 6.6). To determine 

which model best approximates the mechanisms generating the transition data we 

used the Akaike Information Criteria {AIC) (Akaike 1973; Burham and Anderson 

1998).  If Lh is the likelihood of model Mh and ph is the number of parameters in 

163 



Mo 0 
Mi 1 
M2 2 

Model Name   No. of interactions   No. Parameters __ 

2(5-1) 
2(5 - 1) 

Ms S (5 + l)(5-l) 

Table 6.4: The models fitted to the subtidal data, with the number of species inter- 
actions affecting each entry a^, i = 1,..., 5, in the jih column and the number of 
parameters estimated for each column of Ax. The variable 5 is the number of states 
in the Markov chain (5 = 8). 

model Mh, then the AIC for Mh is 

AIC=-2]nLh + 2ph (6.7) 

The model that minimizes AIC is considered the most parsimonious, best-fitting 

model (Akaike 1973). Because models are fit separately to each column, it is possible 

to have different best fitting models for different columns of Ax. 

For each model Mh, h = 0,..., 8, we assume that the set of the probability 

functions %• (x) in column j depend on the densities of exactly h species (table 6.4). 

Each Oy(x), however, can depend on a different set of species (as long as the set 

contains h species). This means that the total number of possible models for each 

column is 

sUs^ji) (6-8) 

and for the entire transition matrix is 

(s(Ä)T- (69) 

Thus for a community with 8 states (5 = 8) the total number of possible nonlinear 

Markov chains is approximately 10199.  Obviously, this is an incredible large model 
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space to search for the best-fitting nonlinear Markov Chain. Not surprisingly, trying 

to find the best-fitting model using polychotomous logistic regression methods alone 

takes an unreasonably long time. 

6.4.3    Model Fitting using a Two Step Method 

To more efficiently search this model space, we developed nonlinear Markov chains 

using the following two-step process. 

1. We treat each a^ as a binary logistic regression problem to rank the strength 

of the effect each species has on the replacement of species j by species i. 

2. We then use the species rankings obtained in step 1 to specify a set of poly- 

chotomous logistic models for each column of Ax. 

We can write a binary logistic model for each a^, by assuming there are two 

outcomes for a patch in state j; it either becomes occupied by state i at time t + 1, 

or it does not. The logit function for a,ij is 

ln-^_ = <c,y> (6.10) 
1 — fly- 

where c is a vector of parameters and y = [1, x] is a vector of species densities. Solving 

(6.10) for dij yields 
e<c,y> 

a* = TT7^> (6-n) 

To rank the species according to their effect on a^, we first assume that a^ depends 

on the density of a single species. For each species k (k = 1,..., S) we maximize the 

likelihood formula 

lnL(c|Data) = £$>(i,l,t) (<c,yft> - ln(l + e<cjr»>) (6.12) 
i    t 
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where y/t axe the densities of species k in quadrat I at time t and n(i, I, t) is the 

number of patches that change from state j to state i in quadrat I within the time 

interval (t, t + 1). The species that yields the largest likelihood value (lnL) is ranked 

as having the strongest effect on the replacement of species j by species i. We denote 

this species as x^. 

To identify the seconded ranked species we repeated this procedure, assuming that 

aij depends on the density of x^ and a second species m (m/ a^1)). The species m 

that yields the largest likelihood value (in combination with species x^) is ranked as 

having the second strongest effect on the replacement of species j by species i. This 

process is continued until all species have been ranked according to their effect on 

a;j(x). Note that estimations of the parameter values c are important for determining 

the best ranking of species, however, these values are not used to parameterize the 

nonlinear Markov chain. 

Once the species ranking are specified for each a*,-, we write the transition proba- 

bilities in each column of Ax as a set of polychotomous logistic functions (Eq. 6.4). 

To fit a specific model Mh to column j, we create a set of density matrices in the 

form 
/ 

%it 

\ 

x (i) 5-1 

XS-1 ) 

(6.13) 

where x\ ' is the density of the species with the fcth strongest effect on the replacement 

of species j by species i (as specified by the binary logistic analysis). For example, to 

fit the model Mi we substitute the set of matrices 

/ 

Zft *?>   xf 
r(2)     T(2) 

\ 

r(i) 

(2) 
X s-\ 

(6.14) 
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into the polychotomous likelihood function (Eq. 6.6). 

6.4.4    Best fitting model 

Table 6.5 shows log-likelihood and relative AAIC value (AAIC = AIC value relative 

to the best model) for the models Mh, h = 0,..., 8, for each column of Ax (HYM, 

MYX, MYC, etc.). The best fitting model for each column has a AAIC value equal to 

0.0. In general, the best fitting models include the densities of all but one or two of the 

species in the community. For example, the best fitting model for the set of functions 

ai>t-(x) describing the replacement of Hymedesmia by species i (i = 1,..., 8) include 

the densities of seven species. 

Table 6.5 shows that the best nonlinear Markov chain is comprised of a transition 

matrix Ax whose first column consists of a set of probability functions specified by 

model M7, whose second column consists of a set of probability functions specified 

by model M6 model, etc. This transition matrix can be represented using the symbol 

M7677776e, where the first entry in the subscript gives the number of species interac- 

tions for column one, the second entry gives the number of species interactions for 

column two, and so on. The rank ordering of species interaction strengths for each 

of the probability functions a#(x) is shown in the appendix. 

6.5    Results: Nonlinear Dynamics of the Subtidal 

Community 

6.5.1    Numerical simulations 

The analysis of the nonlinear Markov Chain M76777766 depends on numerical simula- 

tion, as there is no hope of finding analytical solutions for a model of this complexity. 

Numerical analysis were carried out by specifying an initial probability vector x(0) 

(where x(0) is an 8 x 1 non-negative column vector whose elements sum to 1) and 
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HYM MYX MYC SEA 
Model n logL AAIC logL AAIC logL AAIC logL AAIC 
Mo 7 -8739.9 597.4 -3213.3 273.9 -1457.6 407.9 -1681.9 517.4 
Mi 14 -8565.5 262.6 -3125.7 105.3 -1361.2 229.1 -1649.8 467.1 
M2 21 -8469.4 84.5 -3084.2 43.5 -1287.2 95.1 -1515.5 4212.6 
M3 28 -8438.5 36.7 -3059.9 9.0 -1253.1 41.0 -1438.4 72.4 
M4 35 -8428.4 30.3 -3051.7 6.6 -1237.5 23.8 -1413.0 35.4 
M5 42 -8419.2 26.0 -3046.2 9.6 -1224.4 11.6 -1395.5 14.5 
M6 49 -8411.3 24.2 -3034.4 0.0 -1217.0 10.7 -1385.8 9.0 
M7 56 -8392.2 0.0 -3031.0 7.2 -1204.6 0.0 -1374.3 0.0 
M8 63 -8391.3 12.2 -3029.1 10.1 -1202.8 10.4 -1374.2 13.9 

CRI FIL FG BR 
Model n logL AAIC logL AAIC logL AAIC logL AAIC 
M0 7 -7862.4 913.5 -2456.3 347.3 -4435.2 578.1 -5432.2 817.4 
Mi 14 -7559.2 321.0 -2323.6 95.9 -4239.7 196.1 -5240.0 442.9 
M2 21 -7443.8 104.4 -2303.9 70.6 -4169.4 74.5 -5069.7 120.6 
M3 28 -7418.5 67.6 -2269.9 16.4 -4145.5 40.7 -5038.8 72.7 
M4 35 -7393.4 31.6 -2260.0 10.6 -4128.0 19.6 -5015.2 39.5 
M5 42 -7378.5 15.8 -2252.1 8.8 -4117.9 13.4 -5003.3 29.7 
M6 49 -7371.4 15.6 -2244.2 7.0 -4104.2 0.0 -4981.5 0.0 
M7 56 -7356.6 0.0 -2233.7 0.0 -4099.7 4.9 -4976.7 4.5 
M8 63 -7355.5 11.7 -2233.6 13.9 -4098.6 16.7 -4975.4 15.9 

Table 6.5: The models fitted to the photo quadrat data, with the number of parame- 
ters (n) for each column, the log likelihood (log L), and the AIC value relative to the 
best model {AAIC). 

then iterating the model according to equation (6.1). At each iteration the value of 

the elements of Ax were calculated as a function of x(£) using formula (6.4). 

The nonlinear Markov chain has several classes of potential behavior 

• Convergence to a stable equilibrium distribution x 

• Convergence to multiple stable equilibrium distributions Xj 

• Periodic, quasiperiodic, or chaotic dynamics 

To examine all possible behaviors of the model we ran 10,000 simulations for 500 time 

steps. Each simulation was initialized by randomly choosing a probability vector Xo 
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from a uniform distribution on the 5 — 1 simplex. 

6.5.2    Equilibrium dynamics 

Simulations of the nonlinear Markov chain revealed three coexisting attractors; a sta- 

ble 2-cycle and two stable equilibria (Fig. 6.1). The 2-cycle has the largest basin of 

attraction, with convergence to the 2-cycle attractor occurred in 57.2 % of the simula- 

tions (Fig. 6.1a). Species densities on this attractor are almost completely dominated 

by Mycale, which occupies 89.1% of the patches (Fig. 6.1b). The functional group 

(FG) has the second highest density, with an average patch occupancy of 7.1%. Three 

of the species states, Filograna, Crisia and the sea anemones, are almost completely 

ehminated from the community. 

Initial conditions within the second largest basin of attraction converge monoton- 

ically to a stable equilibrium (occurring in 34.2% of the simulations) (Fig. 6.1c,d). 

Species densities on this attractor are dominated by Crisia and Hymedesmia, which 

occupy 55.1% and 30.0% of the substrate, respectively. We refer to this equilibrium 

distribution as the CRI-HYM equilibrium. 

Initial conditions within the smallest basin of attraction converge slowly to a stable 

equilibrium via a damped 2-cycle oscillation (occurring in 8.6% of the simulations) 

(Fig. 6.1e,f). This attractor is dominated by the sea anemones, which occupies 49.6% 

of the substrate at equilibrium (SEA equihbrium). The remaining proportion of the 

substrate is almost completely unoccupied (BR = 49.0%), with no other species 

having densities greater than 0.5%. 

While the 2-cycle has the largest basin of attraction, the species frequencies pre- 

dicted by the CRI-HYM equiübrium are much more similar to observed frequencies 

in the subtidal quadrats. Figure 6.2 shows a comparison of the CRI-HYM equihb- 

rium species frequencies with the mean observed frequencies.   The mean observed 
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Figure 6.1: Coexisting attractors for the best fitting nonlinear Markov chain, in which 
parameters were estimated based on species densities within quadrats. Time series 
for the attractors are shown in a, c, and e, along with the proportion of times the 
model converged to each attractor starting from 10,000 random initial conditions. 
Histograms of the equilibrium species frequencies for each attractor are shown in b, 
d, and /. 
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frequency of species i was calculated as 

L    T 

öi = ^£E ni,i,t 

LT I=11=1 Ei rij,i,t 

where nitiyt is the number of patches containing species i in quadrat I at time t 

(6.15) 

6.5.3    Convergence times 

Convergence times for each attractor were calculated by simulating the model M76777766 

according to Eq. (6.1) starting from 10,000 initial conditions x(0), randomly selected 

from a uniform distribution on the (S—l) simplex. Convergence times were calculated 

as the mean number of iterations required to satisfy the following criteria 

^2\xi(t-2)-Xi(t) |< 0.001 (6.16) 
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where Xi(t) is the frequency of state i at time t (we used Xi(t — 2) instead of Xi(t — 1) 

because one of the attractors is a 2-cycle). The mean convergence time for the 2-cycle 

attractor is 22.4±5.8 years (1 S.D.), for the CRI-HYM equilibrium is 31.Ü6.7 years, 

and for the SEA equilibrium is 397.6 ± 308.2 years. 

6.6    Dependence of species interactions on neigh- 

borhood size 

The above results are based on the assumption that species interactions operate over a 

spatial scale of 600 cm2 (i.e. the size of a single quadrat). Since the subtidal species in 

our model are sessile, however, they probably interact primarily with their neighbors. 

Thus species replacements are more likely to be effected by local neighborhood den- 

sities surrounding a patch than by the average population densities among quadrats 

(Pacala and Silander 1985, 1990). 

Here we examine the effect of spatial scale on species interactions by subdividing 

the quadrats into either 4 or 8 subsections. In effect, making the spatial scale of the 

quadrats smaller is equivalent to decreasing the neighborhood size (NS) around each 

patch. Subdividing the quadrats into 4 sections created 4 x 9 = 36 sub-quadrats, 

each with an area of 150 cm2. Subdividing the quadrats into 8 sections created 72 

sub-quadrats, each with an area of 75 cm2. Once the data was portioned in this 

manner, we followed the two step procedure outlined in section (6.4.3). 

Table 6.6 shows the best fitting models using a neighborhood size of 150 cm2 

and 75 cm2. In all cases, the second best fitting model for each column of Ax has 

a AAIC value greater than 4, suggesting that it has considerably less support than 

the best fitting model (Burnham and Anderson 1998). In general, decreasing the 

neighborhood size tends to reduce the number of species interactions in the model. 

For example, in the first column of Ax (transitions from HYM), the Oy are a function 

of four interspecific interactions when NS = 150 cm2, but only three interspecific 
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Neighborhood Size 
Column of A 150 cm2 75 cm2 

HYM M4 M3 

MYX M4 M2 

MYC M4 M4 

SEA M5 M5 

CRI M5 M5 

FIL M4 M2 

FG M4 M4 

BR M6 M3 

Table 6.6: Best fitting models for each column of A obtained by dividing the quadrats 
into either 4 or 8 sub-quadrats. The sub-quadrats are equivalent to a neighborhood 
size of 150 cm2 and 75 cm2, respectively. The symbol Mh specifics the model with 
the lowest AIC value for the transition probabilities in each column of A, where the 
subscript h gives the optimal number of interspecific species interactions. 

interactions when NS = 75 cm2. The best fitting model for the 150 cm2 neighborhood 

is Mu45544& and for the 75 cm2 neighborhood is M32455243 (Table 6.6). 

6.6.1    Equilibrium distributions 

The nonlinear Markov chain models MU455U6 and M32455243 have multiple stable 

equilibrium states of attraction. Figure 6.3 shows the co-existing attractors at neigh- 

borhood sizes of 150 cm2 and 75 cm2. In both cases the dominant attractor is the 

CRI-HYM equilibrium. Two other attractors coexist when NS = 150 cm2, an equi- 

librium distribution dominated by Filograna (FIL equihbrium) and an equihbrium 

distribution dominated by Mycale (MYC equihbrium). Both of these equilibria, how- 

ever, have much smaller basins of attraction than the CRI-HYM equihbrium. When 

NS = 75 cm2, the MYC equihbrium disappears completely, and the basin of the 

CRI-HYM attractor increases in size. 

To examine the effect of neighborhood size on the ability of the model to predict 

the species distribution in the subtidal community, we calculated the distance between 

the various CRI-HYM equilibria and the observed species distribution shown in figure 
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Model Distance (D) 
Nonlinear 

NS = 600 cm2 0.68 
NS = 150 cm2 0.63 
NS = 75 cm2 0.44 

Linear 0.19 

Table 6.7: Distance between the predicted and observed equilibrium distribution for 
nonlinear and linear Markov chains. Comparisons for the nonlinear Markov chains 
use the CRI-HYM equilibrium distribution. 

6.2. The distance D is measured as 

Z> = £|:*-0«| (6.17) 
8 

E 

where Xi is the predicted equihbrium frequency of species i and Ö* is the mean fre- 

quency of species i. Table 6.7 shows values of D for neighborhood sizes of 600 cm2, 

150 cm2, and 75 cm2, and for the linear Markov chain M0 (i.e. the a^ are independent 

of species densities). While decreasing the neighborhood size in the nonlinear model 

decreases the distance between predicted and observed abundances, the linear model 

does a much better job at predicting community composition. 

6.6.2    Distribution of species interaction coefficients 

Figure 6.4 shows the distribution of species interaction coefficients for the best fitted 

models, estimated at different neighborhood sizes. In all cases the mean value is 

approximately 0, but the variance decreases with decreasing neighborhood size from 

105.6 (NS = 600 cm2.), to 44.2 (NS = 150 cm2), to 19.52 (NS = 75 cm2). Thus, as the 

neighborhood size decreases, the proportion of species interactions that are relatively 

weak increases. 
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Equilibrium 
CRI-HYM 
FIL 

Neighborhood Size 
600 cm2 150 cm2 75 cm2 

31.15 (6.73)   76.41 (26.78)   30.56 (26.28) 
— 9.61 (2.35)      13.19 (3.03) 

Table 6.8: Mean convergence time to the CRI-HYM and FIL equilibriums, based on 
10,000 simulations of the nonlinear Markov chain associated with each Neighborhood 
size. Values in parenthesis are 1 standard deviation (see text for details). 

6.6.3    Convergence times and patterns of succession 

The mean convergence times for the models Muissue (NS = 150 cm2) and M32455243 

(NS = 75 cm2) to the CRI-HYM equilibrium and the FIL equilibrium are shown in 

Table 6.8. The mean convergence time to the CRI-HYM equihbrium is 3 to 8 times 

longer than the convergence time to the FIL equilibrium. There is no general relation 

between convergence times and neighborhood size. Convergence time for the CRI- 

HYM equihbrium is longest when NS = 150 cm2 (intermediate spatial scale), while 

for the FIL equihbrium it is longest when NS = 75 cm2. 

Figure 6.5 shows the pattern of succession starting from an initial condition in 

which the abundance of bare rock is set to one, and abundances of all the species are 

set to zero. This represents succession following the total destruction of the existing 

community. When the neighborhood size is 600 cm2 the community converges almost 

immediately to the periodic 2-cycle attractor (Fig. 6.5a.). When the neighborhood 

size is 150 cm2 or 75 cm2, however, the community converges to the CRI-HYM equi- 

hbrium (Fig. 6.5b,c). Note that the time track of colonization differs between many of 

the species. For example, Filograna, the sea anemones, and the functional group (FG) 

reach an early peak in abundance within 2-4 years and then drop off fairly sharply 

before they approach their equihbrium. The sponges Hymedesmia and Myxilla, on 

the other hand, tend to increase monotonically towards their equihbrium abundance. 

Finally, Crisia increases monotonically when NS = 150 cm2, but shows an early peak 

in abundance followed by a slow decline towards equihbrium when NS = 75 cm2. 
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6.6.4    Rates of local succession 

A Markov chain describes two spatial scales—the dynamics of the community and 

the local dynamics of patches. At equilibrium the proportion of patches in each state 

is constant, however, individual patches change states continuously through time. 

Once the community converges to an equilibrium distribution the matrix Ax re- • 

mains constant. Prom the equihbrium matrix Ax we investigate rates of successional 

change at the spatial scale of a patch by calculating mean turnover rates and Smou- 

chowski recurrence times for each state. 

• The mean turnover rate describes the probability that a randomly selected patch 

changes state between t and t + 1, and is given by 

I>(l-0 (6.18) 

where Wi is the ith element of the dominant eigenvector, and (1 — an) is the 

probability that a patch in state i changes states in the time interval from t to 

t + 1 (Iosifescu 1980). 

• The Smouchowski recurrence time 0* of state i is the time elapsing between a 

patch leaving state i and then returning to it again. Its mean is given by 

Öi =     )~Wi y (6-19) 
Wi{l - an) 

(Iosifescu 1980). 

Table 6.9 shows mean turnover rates at the various equilibrium points. Patch 

turnover rates are much greater when the system has converged to the CRI-HYM 

equihbrium, than when it has converged the FIL or MYC equilibrium. In the case 

of the CRI-HYM and FIL equihbriums, the predicted turnover rate increases as the 

spatial scale of the density dependence decreases. 
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Equilibrium 
CRI-HYM 
FIL 
MYC 

Density Spatial Scale 
300 cm2    150 cm2    75 cm2 

0.2700      0.3112     0.3655 
— 0.0031  0.0786 
— 0.1673   — 

Table 6.9: Mean turnover rate of patches when the subtidal community is at an 
equilibrium point. Turnover rates give the probability that a randomly chosen patch 
changes states in one time interval. The turnover rates in each column correspond 
to the best fit nonhnear Markov chain for a given spatial scale of density dependence 
(see text for details). 

Figure 6.6 shows Smouchowski recurrence times for each species at the CRI-HYM 

equilibrium and the FIL equilibrium. In general, $i decreases as the neighborhood 

size decreases. This is especially true in the case of the FIL equilibrium, where the 

recurrence time for many species decreases by as much as ten-fold when the NS 

decreases form 150 cm2 to 75 cm2. 

6.7    Bifurcation Analysis 

When the neighborhood size of a patch is small, the nonlinear Markov chain always 

converges to a stable equilibrium. One of the signatures of nonlinear models, however, 

is their ability to produce periodic cycles, aperiodic oscillations and chaos. Shifts in 

parameter values can cause bifurcations from one of these behaviors to another (e.g., 

May 1974,1976, Hastings and Powell 1991; Pascual 1993, Costantino et al. 1995; 

Caswell and Neubert 1998). Here we look for bifurcations caused by changes in the 

strength of the interactions among species. We focus on the nonlinear Markov chain 

M32455243, parameterized using a neighborhood size of 75 cm2. 

The interaction coefficients for a given species can be changed in the following way. 

Let C(fc) be a coefficient matrix whose (i,j) element is the interaction coefficient asso- 

ciated with species k in the function a„(x). The coefficient matrix for Hymedesmia 
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(k = 1) is shown below 

Cd) 

0.77 2.52 -2.41 0.46 2.85 

0.46 1.27 — -0.44 -0.44 

1.85 — — — 0.21 

— — -5.14 — -0.08 

0.44 1.64 0.20 — 0.90 

2.41      1.32     2.06 

-2.87 0.97 

-0.34 

-1.06 

1.93 

-4.51 

-0.67 

V -0.11 -0.83 3.44 

(6.20) 

/ 

i.e. 
(1 ^ 

where the element c\{ is the value of the interaction coefficient associated with xx ( 

the density of Hymedesmia) in the function on(x), 4V is the value of the interaction 

coefficient associated with xi in the function a2i(x), etc. The dashed symbols — 

indicate transition probabilities that are independent of the density of Hymedesmia. 

An example is the function a32(x) which represents the probability that Myxilla is 

replaced by Mycalle. 

To obtain a bifurcation diagram for species k we proportionally increase the in- 

teraction coefficients by a factor p 

C« = C<*> + (CW x p) (6.21) 

and then insert the new coefficient values given in C£fe) into the functions Oy(x) to 

obtain a new transition matrix Ax
(fe,p) (the superscript (fc,p) indicates that the inter- 

action coefficients associated with species k in the functions a^ have been increased 

by a factor of p). Bifurcation diagrams were obtained by starting the system at an 

equiHbrium point and then increasing the value of p from 0 to 10 in increments of 

0.01. At each increment, we iterated the model 500 times to remove any transient 

dynamics, and then plot 50 iterates of the value of species k (i.e. xk). 

Figure 6.7 shows a set of bifurcation diagrams starting from the CRI-HYM equi- 
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librium, in which the value of xy. is plotted as a function of the proportional change 

(p) in the interaction coefficients of species k. Increases in the interaction strength of 

Crisia and Mycale produce the most dramatic bifurcation patterns, including periodic 

cycles, phase locking and chaotic dynamics. Increases in the interaction strength of 

Myxilla results in a bifurcation from a stable equiUbrium to a 2-cycle at p = 3.67, 

while increases in the interaction strength of Filograna and the sea anemones produce 

a sharp transition in their frequencies (from less than 0.05 to 1) at p equals 3.43 and 

0.78, respectively. For the remaining species, increasing p results in a smooth change 

in equilibrium abundance, but no bifurcations. 

The most dramatic bifurcation patterns are associated with Crisia (Figure 6.8). 

If we start the system in the basin of attraction of the CRI-HYM equilibrium (Fig. 

6.8a), the attractor is a fixed point for p < 2.67. At p = 2.67 a Hopf bifurcation occurs 

in which the fixed point is replaced by an invariant circle. At p « 3.51, the invariant 

circle is replaced by a 3-cycle. Increasing p further results in period doublings and 

eventually leads to chaos. In the chaotic region of parameter space, species densities 

are aperiodic in time and show sensitive dependence to initial conditions (Fig. 6.9). 

When we start the system in the basin of attraction of the FIL equilibrium, the 

attractor remains a stable fixed point until p « 7.09 (Fig. 6.8b). At p > 7.09 the 

fixed point becomes unstable and the system falls into the basin of attraction of the 

chaotic attractor. 

Increasing the interaction strength of the remaining species has no effect when we 

start the system in the basin of attraction of the FIL equilibrium. Thus even though 

the basin of attraction of the FIL equihbrium is comparatively small (relative to the 

CRI-HYM equilibrium), the FIL equihbrium is more stable to large perturbations in 

interaction strengths. 

Because many interaction coefficients are positive, increasing the interaction strength 

of one species increases the relative abundance of other species in the community. Fig- 

ure 6.10 shows how the abundance of Hymedesmia, Mycale, and the FG species vary 
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as a function of the proportional increase in the interaction strength of Hymedesmia. 

Increasing p from 0 to 1 increases the abundance of Hymedesmia. At p « 1, however, 

there is an abrupt decline in Hymedesmia accompanied by a sharp increase in the 

FG species. When p > 1, Hymedesmia abundance is a decreasing function of p while 

Mycale abundance is a monotonically increasing function of p. Thus, increasing the 

interaction strength of Hymedesmia enables Mycale and the FG species to increase 

their abundance at the expense of Hymedesmia. 

6.8    Discussion 

There have been very few empirical studies that have tried to quantify interaction 

strengths among assemblages of species. Most studies have relied on estimating per 

capita interaction strengths through single species manipulation experiments (e.g., 

Fowler 1981, Menge and Farrell 1989). The problem with this approach is that there 

may be a large number of interactions and that the prevalence of indirect effects 

in most communities (the effects of one species on another via its effect on a third 

species) means that pair-wise estimates of interaction strengths are not additive. 

Thus, extrapolating results from single species manipulation experiments to whole 

communities are likely to be unsuccessful (Wilbur 1972; Neil 1974; Wilbur and Fauth 

1990; Wooten 1993). 

The methods presented here allowed us to estimate density-dependent interac- 

tions in an unmanipulated community using spatial time series data. By focusing on 

patch transition probabilities, instead of individual species, we were able to simul- 

taneously estimate interaction coefficients for all species states in our model using 

maximum likelihood methods. Any indirect effects are automatically incorporated 

into the model because interaction coefficients are estimated by taking into account 

the dynamics of the community as a whole. This is not true for species removal 

experiments. 
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Another difference between our methods and species removal experiments is that 

removal experiments tend to focus on interesting or significant interactions, which 

means they are usually selected because they are strong (Lawton 1992). Our analy- 

sis shows not only that the best fitting models contains a large number of species 

interactions but also that most of these interactions are relatively weak. This re- 

sult is consistent with several empirical studies of plant communities showing they 

are dominated by a large number of competitively weak interactions (e.g., Schoener 

1983, Mahdi et al. 1989, Polis 1991). 

Parameter estimation: The two-step method outlined in section 6.4.3 allowed 

us to identify the best fitting nonlinear Markov models, within an extremely large 

parameter space, in a relatively short period of time (2 to 4 days depending on the 

size of the neighborhood). The reason for this is two fold. First, the binary logistic 

regression method greatly reduces the number of species combinations one needs to 

test to find the best fit for a given model. For example, to find the best Mx model for 

column j, one needs to identify the species whose density has the greatest effect on 

the replacement of species j by species i,i — l,...,S (i.e. the highest ranked species 

for each ay(x)). Since the number of possible choices per transition probability is 

5—1, the number of possible species combinations we need to test to find the highest 

ranked species for all the transition probabilities in column j is S(S — 1). In contrast, 

if we used polychotomous logistic regression to perform the same task, the number of 

possible combinations we would need to test is (S — l)(s_1). The problem, of course, 

only gets worse as the number of species interactions increases. 

The second reason the two-step method shortens the search time is that maxi- 

mization of Eq. 6.11 (binary likelihood function) is much faster than Eq. 6.6 (poly- 

chotomous likelihood function). Thus, the binary regression methods enable us to 

quickly identify the relative ranking of the species, according to their effect on the 

replacement of species j by species i, for each entry in Ax. Once the species rankings 
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axe determined, however, the interaction coefficients associated with a given model 

Mh are found fairly quickly using the polychotomous regression method (since we 

only need to maximize Eq. 6.6 once for a given set of species interactions). 

Community dynamics: Simulation of the nonlinear Markov chain suggested that 

the subtidal community is capable of periodic orbits and multiple equilibria. This 

suggests that large perturbations in species abundance (caused by random climate 

change or biological disturbances) may result in ecological shifts from one equilibrium 

region to another. This pattern of multiple equihbrium states has been observed 

in several empirical studies of natural communities (Holling 1973, 1992; Sutherland 

1974; Levin 1976; May 1977; Hughes 1994). Sutherland (1974) and Connell and 

Slatyer (1977) have extensively reviewed work on the marine rocky intertidal, on 

coral reefs, on freshwater lakes, and on terrestrial plant communities, and concluded 

that community structure is indelibly tied to historical events and therefore multiple 

equilibrium states are an undeniable reality of natural systems. 

Our model of the subtidal community corroborates these conclusions and suggests 

that large-scale phase shifts in community composition are possible. If we assume 

that the current state of subtidal communities in the Gulf of Maine falls within the 

basin of attraction of the CRI-HYM equihbrium, then any change in the physical 

environment, which pushes the system out of that basin, will drastically change the 

structure of the community. All of the other equihbrium states in our model predict 

complete domination of the substrate by a single species (regardless of the density 

spatial scale used to parameterize the model). Thus perturbations that shift the 

community towards a new equihbrium will drastically reduce the diversity of the 

community. Huges (1994) has documented such an event in coral reef communities off 

Jamaica, where overfishing, disease, and hurricane damage have combined to destroy 

most corals, resulting in dramatic phase shift to a low diversity system dominated by 

fleshy macroalgae. 
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Distribution of interaction coefficients: We found that interaction strengths in 

the subtidal community were symmetrically distributed around zero, with interaction 

coefficients equally as likely to be positive as negative. While negative coefficients 

probably represent competition between species for space, positive coefficients repre- 

sent not only mutualistic interactions but also indirect species effects (e.g., Callaway 

1997, Hodge et al. 1999, Levine 1999). If the presence of species X, inhibits species Y 

which has a negative effect on species Z, then the interaction coefficient corresponding 

to species X in the function o^-(x) is likely be positive. Paine (1992) found similar 

indirect positive interactions between intertidal invertebrates (chitons and limpets) 

and two species of brown algae (Hedophyllum sessile and Alaria ssp.). In this case 

the invertebrates prey on a crustose coralline algae, which in turn inhibits the recruit- 

ment of H. sessile and Alaria. Thus, the actions of the invertebrate predators have 

a positive effect on the brown algae because it increases the recruitment rate of H. 

sessile and Alaria onto the substrate surface. 

The effects of neighborhood size: The number of species interactions and the 

distribution of interaction strengths in our model is dependent on neighborhood size 

we chose to parameterize the model. When density effects are measured over smaller 

spatial scales the number of interactions decreases and interaction strengths became 

weaker (Fig. 6.4). The pattern of species interactions specified by our model is 

similar to several recent empirical community studies which show that most species 

have weak effects on the abundance of other species, while only a few have strong 

effects (Paine 1992, Fagan and Hurd 1994, Raffaelli and Hall 1996; Wootton 1997). 

The neighborhood size used to estimate species densities also affected the behavior 

of the nonlinear Markov chain. When we parameterize the model using an neighbor- 

hood size of 600 cm2, the dominant behavior of the system is a two-cycle, in which the 

community is dominated by the sponge Mycale. As we decreased the neighborhood 

size, however, the best-fitting model predicts a more stable and diverse community 

191 



structure (CRI-HYM equilibrium). This may be due to the increase in the number of 

weak interactions between species. Weak species links have been shown to dampen 

oscillations in theoretical food web models, thus reducing the probability that species 

go extinct (McCann et al. 1998). 

Finally, neighborhood size also plays an important role in measurements of local 

patch dynamics. Mean turnover rates and species recurrence times both increase 

as the neighborhood size decreases. This result points out one of the fundamental 

dilemmas in ecology; identifying the characteristic scale at which local interactions 

operate to produce observed community patterns at larger temporal and spatial scales 

(Levin 1992; Pascual and Levin 1999). 

Nonlinear Dynamics: The bifurcation analysis allowed us to examine what would 

happen to the community if the intensity of interactions associated with one species 

were increased. Increases in the strength of the interaction of the bryozoan Crisia 

(and to a lesser extent Mycale) with the rest of the community lead to periodic oscil- 

lations and chaotic dynamics. While chaos has been found in numerous theoretical 

community models (e.g., Gilpin 1979, Hastings and Powell 1991, Kot et al 1992, 

Caswell and Neubert 1998), this is the first time it has been reported in a Markov 

chain model for community competition. 

The bifurcation analysis also shows that increasing the interaction strength of a 

species does not guarantee its abundance will increase. For example, increases in the 

strength of the interaction of Hymedesmia with the rest of the community actually 

lead to a decrease in its abundance (Fig. 6.10). This occurred because Hymedesmia 

has a strong negative effect on the abundances of Crisia, Myxilla, Filograna, and the 

sea anemones, which in turn have a negative effect on the abundance of Mycale. If the 

interactions of Hymedesmia with other species become too strong, then the species 

inhibiting Mycale are almost completely wiped out. This allows Mycale to increase 

its abundance in the community and actually inhibit Hymedesmia. 
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6.9    Conclusion 

Most applications of Markov chain models to marine systems have been limited to 

linear models, in which transition probabilities are time-invariant. Patch transitions, 

however, certainly depend on species abundances. To assess the importance of such 

factors in a rocky subtidal community, we constructed a nonlinear Markov chain by 

making patch transition probabilities a function of species densities. We introduced a 

two-step method, based on logistic regression analyses for binary and polychotomous 

variables, that allowed us to estimate the density dependence of the elements Ax. 

Parameters for these functions were estimated using maximum likelihood analysis 

and the best models chosen using AIC methods. 

By applying this methodology to the subtidal data set, we showed that the commu- 

nity possess multiple equilibrium states, that the distribution of species interactions 

are symmetrically distributed around zero (and mostly weak), and that the behavior 

of the model depends on the spatial scale (neighborhood size) at which the parame- 

ters are estimated. These results illustrate the complexities involved in predicting 

the behavior of any species assemblage. First, systems with multiple equilibria can 

change radically given a large perturbation (May 1977) and thus future states of the 

community are highly dependent on random environmental events. Second, choosing 

the correct spatial scale to parameterize the model is not a simple task, and nonlinear 

models parameterized using different density spatial scales can give entirely different 

results (Pascual and Levine 1999). 

Our approach differs from traditional methods of measuring interaction strengths 

because we are concerned with their effect on patch transitions as opposed to species 

abundances. The advantage of our methodology is that it allows us to simultaneously 

estimate a set of interaction coefficients based solely on time series data. Because of 

the nonlinearities inherent in ecological systems, the effect of changes in interaction 

strengths and/or species densities can only be understood if all possible combina- 

tions of interactions are estimated at the same time (Bender et al. 1984). Pair-wise 
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estimations of interaction strengths (via species removal experiments) provide little 

information about how species will interact when they co-occur within an assemblage 

of organisms, and what effect those interactions will have on the dynamics of the 

community (Wootton 1993). 
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Appendix 

The tables below show the rank ordering of species interaction strengths for each of 

the probability functions Ojj(x) pertaining to the best-fit model (Neighborhood Size 

= 600 cm2). Each row in the tables identifies the species whose densities affect the 

transition from state j to state i. The order of the species in the rows gives the species 

ranking, from strongest to weakest, according to their affect on the probability that a 

patch in state j changes to state i in one time interval (see section 6.4.3 for details). 

The species in the columns designated as "Out" are not included in the probability 

functions ay(x). 

From HYM 
To 1 2 3 4 5 6 7 Out 
HYM MYC SEA FG HYM MYX BR CRI FIL 
MYX MYX MYC BR FIL FG SEA CRI HYM 
MYC MYC HYM FG SEA BR MYX CRI FIL 
SEA FIL MYX HYM SEA BR MYC FG CRI 
CRI FG MYC MYX HYM FIL BR SEA CRI 
FIL FIL SEA FG HYM MYC MYX CRI BR 
FG BR FIL CRI HYM MYC FG SEA MYX 

From MYX 
To 1 2 3 4 5 6 Out 
HYM HYM MYC MYX BR FG CRI FIL SEA 
MYX HYM CRI FG BR MYC MYX FIL SEA 
MYC MYC FIL FG MYX BR HYM CRI SEA 
SEA MYX HYM SEA FG MYC BR FIL CRI 
CRI CRI MYC FIL MYX BR FG SEA HYM 
FIL FIL SEA CRI BR MYC MYX FG HYM 
FG FIL CRI HYM FG SEA MYX MYC BR 
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From MYC 
To 1 2 3 4 5 6 7 Out 
HYM FG MYC MYX HYM CRI BR SEA FIL 
MYX MYC HYM MYX BR FIL SEA FG CRI 
MYC FIL CRI FG SEA HYM MYC BR MYX 
SEA SEA FG HYM FIL CRI BR MYX MYC 
CRI FG CRI FIL HYM MYX MYC BR SEA 
FIL FIL CRI SEA HYM FG BR MYC MYX 
FG FG MYX BR CRI SEA MYC FIL HYM 

From SEA 
To 1 2 3 4 5 6 7 Out 
HYM MYX SEA BR FIL MYC FG CRI HYM 
MYX MYX SEA BR HYM CRI FG FIL MYC 
MYC HYM FG BR CRI SEA MYX FIL MYC 
SEA MYX BR FIL SEA FG HYM CRI MYC 
CRI SEA MYC FG MYX FIL CRI BR HYM 
FIL FIL HYM MYC BR CRI MYX FG SEA 
FG BR FIL CRI MYC MYX SEA FG HYM 

From CRI 
To 1 2 3 4 5 6 7 Out 
HYM HYM FG FIL CRI SEA BR MYX MYC 
MYX MYX FG HYM FIL BR MYC SEA CRI 
MYC MYC CRI FIL BR HYM MYX FG SEA 
SEA FIL HYM MYC SEA FG MYX BR CRI 
CRI FG CRI MYX FIL BR HYM MYC SEA 
FIL FIL FG MYX SEA MYC BR HYM CRI 
FG CRI FG HYM MYX SEA BR FIL MYC 
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From FIL 
To 1 2 3 4 5 6 7 Out 
HYM HYM MYX BR SEA FIL MYC CRI FG 
MYX MYX SEA FIL BR MYC CRI FG HYM 
MYC SEA FG MYX FIL CRI HYM MYC BR 
SEA BR SEA CRI HYM MYC MYX FG FIL 
CRI CRI FIL FG BR MYX SEA MYC HYM 
FIL FIL BR MYX CRI SEA FG MYC HYM 
FG FG BR CRI FIL HYM MYC MYX SEA 

] FromFG 
To 1 2 3 4 5 6 Out 
HYM FG HYM BR SEA FIL MYC MYX CRI 
MYX MYX HYM BR FG SEA FIL CRI MYC 
MYC HYM BR SEA CRI FIL MYX FG MYC 
SEA FG MYX FIL BR HYM SEA MYC CRI 
CRI CRI FG FIL MYX HYM MYC SEA BR 
FIL FIL BR MYX FG HYM SEA MYC CRI 
FG CRI FIL BR FG MYC SEA HYM MYX 

FromBR 
To 1 2 3 4 5 6 Out 
HYM SEA FIL MYX FG BR HYM MYC CRI 
MYX MYX CRI HYM FIL SEA FG BR MYC 
MYC MYC FG CRI FIL SEA MYX HYM BR 
SEA SEA HYM MYC FIL BR FG MYX CRI 
CRI FG CRI HYM MYX SEA FIL MYC BR 
FIL FIL MYX HYM SEA CRI FG MYC BR 
FG FIL CRI HYM MYX SEA FG BR MYC 
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Chapter 7 

Conclusion and Future Directions 

In this thesis I have presented a series of spatial models describing the dynamics of 

metapopulations and a rocky subtidal community. These models are motivated by 

recent theoretical and empirical evidence that the distribution of organisms in space 

can have important consequences for the function and structure of terrestrial and 

aquatic systems (Levin and Paine 1974; Steel 1978; Pickett and White 1985; Caswell 

and Cohen 1991a,b; Weins et. al. 1993; Wu and Levin 1994; Wu and Loucks 1995; 

Hanski 1999). 

While the questions addressed in each of the chapters are diverse, the underlying 

assumption of the models is that an assemblage of organisms can be represented as 

a mosaic landscape of discrete patches. Patches can be in one of N possible states, 

where the state of a patch is defined by the organism or organisms occupying it. In 

the metapopulation models (Chapters 2 and 3) patches represent habitat fragments 

capable of supporting a local population. In subtidal community models (Chapters 

4, 5, and 6) a patch represents the spatial location of an invertebrate species on the 

rock wall substrate. In either case, however, the models are formulated in terms of a 

transition matrix whose a^ entry gives the probability that a patch in state j changes 

to state i (i = l,...,N) in a single time step. 

206 



7.1    New insights into the effects of habitat de- 

struction 

In the past ten to fifteen yeaxs, metapopulation models have become an important 

tool for studying the effects of habitat destruction on metapopulation persistence. 

While modeling methods have varied, the general thrust of these studies has been to 

predict how habitat destruction will affect occupied patch frequencies and to quantify 

the amount of habitat destruction the population can tolerate before it goes extinct 

(the so called extinction threshold; Tilman et al. 1994). Today the identification of 

extinction thresholds for endangered species has become an important conservation 

strategy. 

Metapopulation models have typically been predicated on three assumptions 

1. The landscape is composed of an infinite number of habitat patches. 

2. Propagules are capable of dispersing throughout the landscape; i.e. colonization 

of an empty patch is not affected by distance. 

3. Suitable patches are randomly distributed in space. 

Extinction thresholds on fractal landscapes: Chapter 2 looks at the effect of 

relaxing assumptions 2 and 3, by exploring the effects of habitat destruction in a 

spatially explicit cellular automaton (CA) model. In the CA, the dispersal range 

of propagules is limited to a 3-patch radius and the habitat destruction pattern is 

explicitly defined using fractal maps. The general findings of this study are illustrated 

in Figure 7.1. When dispersal is local, the equiübrium frequency of occupied patches 

(p) decreases and the extinction threshold (hc) increases as the fractal dimension 

(D) of the habitat destruction pattern increases. The take home message is that in 

large landscapes (consisting of 100's if not 1000's of patches), the spatial structure of 

suitable habitat is at least as important as the amount of suitable habitat. 
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Figure 7.1: Generalized plots of the equilibrium frequency p and the extinction thresh- 
old hc as a function of the fractal dimension of the landscape. The arrows on the right 
and left of the graphs show that decreasing the fractal dimension of the landscape 
is equivalent to increasing the connectivity of suitable patches and decreasing the 
amount to edge between suitable and unsuitable habitat. 
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In today's modern world, habitat loss is inevitable. While the situation is grim for 

many endangered species, efforts should at least be made to ensure that habitat de- 

struction patterns have the lowest possible fractal dimension. The fractal dimension 

of a landscape can be easily measured (Krummel et al. 1987; Sole and Manrubia 

1995; Milne 1988) and conservation efforts to minimize D will maximize connectivity 

in the remaining suitable territory while minimizing edge effects (Fig. 7.1). Lowering 

the fractal dimension of habitat destruction patterns may at least give some endan- 

gered species a fighting chance. Perhaps this is the best we can hope for in a globalize 

economy bent on extracting resources at an ever increasing pace. 

Chain-Binomial Metapopulation Model: Chapter 3 looks at the effects of re- 

laxing assumption 1, by exploring the effects of habitat destruction in finite patch 

networks. The chain-binomial metapopulation (CBM) model develop to describe this 

situation is applicable to marine populations that produce planktonic larvae capable 

of long distance dispersal. In finite landscapes there is no such thing as a posi- 

tive equilibrium frequency or extinction threshold, because with probability 1 the 

metapopulation always goes extinct. The important problem for such systems is to 

determine how habitat destruction affects the extinction time, f, of the metapopula- 

tion. The CBM model reveals a dangerous scenario regarding attempts to predict the 

effects of habitat destruction — f declines greater than exponentially as the number 

of suitable patches, S, declines. Thus, a small amount of habitat destruction has 

the potential to drastically reduce f from effectively infinite values (on an ecological 

time scale) to very small values, leaving a once seemingly healthy population on the 

verge of extinction. The sensitivity of f to changes in S makes the task of identifying 

critical habitat thresholds in finite landscapes a near impossibility. This result has 

especially grave consequences for endangered species, who by definition are confined 

to small patch networks. 
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7.2    Markov chain models of sessile communities 

The structure of marine communities is an emergent property of species interactions 

occurring over relatively small spatial scales and physical processes occurring over a 

range of spatial scales. Determining how these processes interact to produce complex 

community structures, however, remains a fundamental problem in marine ecology. 

In the second half of this thesis, I have shown that Markov chains have the po- 

tential to vastly improve our ability to identify key ecological factors (succession, 

disturbance, competition, environmental variability, etc.) and key species that are 

important for the structure and function of marine sessile communities. The ap- 

proach I have taken is to start with simple Markov chain models, which exclude 

much of the detail of the system, before proceeding to more complex models. Even 

the most complicated of them, however, is not intended as a detailed quantitative 

description of all the factors affecting rocky subtidal commvmities. My philosophy 

is that comparing related models that differ in biological details is a more powerful 

approach for understanding community dynamics than analyzing any one model. 

Linear Markov chain models: In chapter 4 I began the analyses of the rocky 

subtidal community by constructing a linear time-invariant Markov chain. This is the 

simplest model that incorporates the basics of patch transitions, species replacement, 

and disturbance. While the linear Markov chain ignores the effects of environmental 

variability and density dependence, it accurately predicted species distribution in the 

Gulf of Maine, provided ecological information for categorizing species into functional 

groups, and revealed that 38% of the substrate was occupied by a different species 

each year. 

One of the biggest advantages of linear Markov chains is that sensitivity analysis 

can be developed to determine how changes in model parameters affect predicted com- 

munity patterns. Sensitivity analysis has already become an essential part of demo- 

graphic analysis (Tuljapurkar and Caswell 1997, Caswell 2000), and has the potential 
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to become equally valuable in community modeling. Here I used sensitivity analysis 

to characterize how changes in elements of the transition matrix affect predictions 

of species abundance and community diversity. The results suggest that diversity 

is much more sensitive to changes in colonization probabilities than to species re- 

placement probabilities. This finding is consistent with observations by Witman and 

Sebens (1990), who found that competition plays a relatively minor role in structuring 

subtidal communities. 

Linear Markov chain models are also ideal for quantifying the effects of species 

removal on diversity and community resilience. Analysis of the subtidal transition ma- 

trix showed that the removal of Hymedsmia spp. 1 or Myxilla fimbriata produces the 

largest change in diversity, however, the overall change is relatively small. This find- 

ing indicates that there are no real keystone species in the subtidal community. The 

removal of bare rock or Crisia eburnea, however, produced relatively large changes 

in the rate of converge to equihbrium, suggesting that these states are important for 

community resilience. The removal analyses developed in chapter 4 are Markov chain 

analogs to species removal experiments in natural systems. They provide a means of 

classifying the relative importance of individual species to the structure and stability 

of the community when experimental manipulations are not possible. 

Environmental variability: The next step in the complexity hierarchy (chapter 5) 

was to test for significant effects of temporal and spatial variation on patch transi- 

tion probabilities. Because this is a 2-factorial test, I used log-linear analysis, which 

showed that transition probabilities varied significantly between quadrat locations 

and between years in the subtidal zone. While some authors (e.g. Li 1996, Childress 

et al. 1998) have argued that such variability must be taken into account for Markov 

chains to adequately predict equihbrium community structure, I found that including 

this variability in the subtidal model had little effect on predicted species abundances. 

On the other hand, simulation of the time-varying Markov chain shows that temporal 
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variation in successional processes (i.e. transition probabilities) has important conse- 

quences for transient dynamics. In the subtidal community the time-varying model 

predicts frequent shifts in composition between a Hymedesmia dominated community 

and a Crisia dominated community. This pattern is consistent with observations in 

the Gulf of Maine over the past ten years (Witman 1996). 

Chapter 5 also introduces a method for comparing probability matrices (Cohen 

et al. 1998) and uses it to characterize regional variability in the distribution of 

species in space and time. While this methodology is somewhat of a digression from 

the Markov chain approach, it provides a simple but effective way of characterizing 

the spatial and temporal stability of individual species relative to other organisms in 

the community. In the subtidal community, Cohen's method predicts there is more 

variability between quadrats in the temporal distribution of species, than there is over 

time in the spatial distribution of species. This result is consistent with the log-linear 

analysis, which shows a greater effect of space on transition probabilities than time. 

Density dependence Chapter 6 increases the complexity in the subtidal models fur- 

ther by incorporating the effects of density dependence on transition probabilities. 

The most important contribution of this work is the development of maximum likeli- 

hood methods to estimate the effects of species densities on transition probabilities. 

The likelihood methods will allow ecologist to estimate density-dependent interac- 

tions in an unmanipulated community from spatial time series data. By focusing 

on patch transition probabilities, instead of individual species, the strength of inter- 

actions among all species can be estimated simultaneously. Any indirect effects are 

automatically incorporated into the model because species interactions are estimated 

by taking into account the dynamics of the community as a whole. This is not true for 

species removal experiments, which have traditionally been used to measure species 

interaction strengths in community assemblages (Paine 1992). 
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7.3    Future research directions 

Below I briefly describe some future research directions related to the modeling meth- 

ods presented in this thesis. 

7.3.1    Metapopulations models: Habitat restoration and Ma- 

rine reserves 

Habitat restoration: To study the effects of habitat destruction I assumed that 

once habitat was destroyed it remained destroyed forever. In many marine systems, 

however, there is a continuous turnover of suitable habitat, in which the destruction 

of habitat in one region is balanced by the restoration of habitat in another. A classic 

example is hydrothermal vents (Mullineaux et al. 1991), in which subpopulations 

among vent sites can be described as a metapopulation living on a geographical ex- 

panse of ephemeral patches. Extinction of a subpopulation results when the vent site 

it occupies becomes inactive (a process equivalent to habitat destruction). Propag- 

ules produced by many vent species, however, can disperse over long distances (Lutz 

1988) and are capable of colonizing newly developing vent sites (a process equivalent 

to habitat restoration). 

To study the characteristic of such systems I will include habitat restoration in 

the metapopulation models presented in chapter 2. Figure 7.2 shows an idealize tran- 

sition diagram for a metapopulation model with habitat restoration. The goal of this 

research is to analyze the system of equations specific by the transition diagram in 

order to characterize how the rate of destruction and recovery affect persistence and 

extinction times. I will then translate this model into a spatially explicit cellular au- 

tomaton model to study how the spatial location of habitat sites affects the dynamics 

of the system. 
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Figure 7.3: Transition diagram for a hyper-population model of a marine reserve. 
The proportion of the area that falls within the reserve equals q, where 0 < q < 1. 
Xi and Xz represent unoccupied patches in the non-reserve and reserve, respectively. 
X2 and X4 represent occupied patches in the non-reserve and reserve. C* (i = 1,2) is 
the probability that an unoccupied patch is colonized. <5, (i = 1,2) is the probability 
that a local population goes extinct. See text for details. 

Marine reserve design: Setting aside reserve areas for protection from fishing 

is an important option being considered in the management of fisheries (Clark 1996; 

Fogarty 1999). To study how marine reserves could help conserve fish populations and 

benefit fisheries I have developed a hyper-population model describing the dynamics 

of a pair of metapopulations located in two distinct regions. Figure 7.3 shows a 

transition diagram for the hyper-population model, in which the distinct regions 

correspond to reserve and non-reserve areas in a fishery. Fishing is only allowed in 

the non-reserve areas, and the proportion of the fishery that is set aside as non-reserve 

isl-g (0<g<l). 

Metapopulations in the reserve and non-reserve regions are connected to each 
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other via the colonization functions C\(x2, £4) and C2(x2, £4), given by the equations 

'& (x2 (l-a2i) +£40:12) \ 
Ci{x2,x$)   =   1-exp 

q 

n ,        N         1           (b(x2a2i + b2X4{l-C(i2))\ ,--. C2(a;2,rE4)   =   1 - exp I — I (7.1) 

where b is the reproductive parameter (see Eq. 2.10), xt (i = 2,4) is the proportion 

of occupied patches in the fishery, a\2 is the proportion of propagules produced in 

the reserve that end up in the non-reserve (0 < a\2 < q), and 0:21 is the proportion of 

propagules produced in the non-reserve that end up in the reserve (0 < a2i < 1 — q). 

Thus, the parameters 0:12 and 0:21 define the level of mixing of propagules between 

reserve and non-reserve areas. 

Fishing mortality in the non-reserve areas increases the disturbance rate of occu- 

pied patches and the total fishing pressure is assumed to be constant (i.e. fisherman 

don't stop fishing just because some of the fishing grounds are set aside as reserves). 

This means that the fishing pressure per unit area increases as q increases. This effect 

can be modeled as 

I f   \ 81   =   1 — exp — I k + l 

1-qJ 
S2   =   l-exp(fc) (7.2) 

where k is a disturbance parameter and / is a measure of the total fishing pressure. 

The marine reserve metapopulation model is applicable to benthic species, such 

as scallops and oysters, as well as coral many reef fish (Man et al. 1995). I propose 

to analysis this model to determine the optimal reserve size for maximizing the ex- 

ploitable stock and the sustainable yield of the fishery. I will study how this optimum 

varies as a function b, k, /, <*i2 and a2i. I will also translate the reserve-model into a 

spatially explicit cellular automaton to look at the effect of the spatial arrangement 

of reserve areas on stock size and maximum yield. 
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7.3.2    Spatially explicit models of benthic communities 

Spatial-Dependent Markov Chain Models: In this project I will develop a spa- 

tially explicit model of the subtidal community by identifying patch transition proba- 

bilities that are dependent on neighboring species densities. This approach is similar 

to the methods I used in chapter 6 except that the likelihood functions must estimate 

species interaction effects on a patch-by-patch basis. Thus, each cell might have its 

own vector of independent variables, and the parameters would be estimated over the 

entire set of observed transitions. This approach will be computationally intensive, 

but it is worth exploring because it may give different results from the previous meth- 

ods, which only approximated spatial-dependent effects by dividing the quadrats into 

smaller subunits. 

I will use the information from this analysis to build a cellular automaton (CA) 

model in which patches transitions are a function of the states of neighboring patches. 

There is wide latitude in the form of the neighborhood and the nature of the transition 

functions. The difference between a CA model and the nonlinear Markov chain model 

is that the explicit spatial arrangement will affect the outcome. I will use the CA 

model to explore these effects on coexistence and spatial pattern, and explore the 

possibility of long-term phase shifts in community composition. 

A Mechanistic Cellular Automaton Model: State transitions are actually de- 

termined by mechanisms that involve growth, recruitment, disturbance, and com- 

petition for space. Here I propose to develop a cellular automaton model based on 

measurements of these mechanisms. My goal is to produce a matrix that will give the 

probabilities of transitions among states as a function of the state of the neighboring 

patches. 

The procedure will be as follows. 
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1. First, I will estimate the probabilities of each of the basic interactions. My goal 

is to obtain estimates that give, as nearly as possible, the probabilities of each 

process in the absence of the others. 

(a) I will estimate the probability that an empty patch is colonized by each 

species from a set of species removal experiments (Witman, unpublished 

data). These experiments were performed by clearing 30 x 20 cm2 areas 

of all organisms and following recolonization over a two year period. 

(b) I will estimate probabilities of growth into empty patches from the pho- 

tographic records of quadrats over time. This will require some ingenu- 

ity, because growth rates (which are directly measurable) depend on the 

amount of available space and the species present in neighboring patches. 

(c) I will estimate probabilities of competitive overgrowth by examining loca- 

tions where two species occupy adjacent patches. 

(d) I will estimate probabilities of disturbance by monitoring the appearance 

of empty patches. I will use the method of Caswell and Etter (1993) to 

model disturbances of different sizes. 

2. The different processes by which a patch can change state are a set of competing 

risks (e.g., Chiang 1966, David and Moeschberger 1978). Twill use competing 

risk theory to calculate the probabilities of changing state in the presence of 

competing risks. These probabilities will form the cellular automaton transition 

matrix. 

I will study the model by simulation, in order to determine how changes in recruit- 

ment, growth, and competitive exclusion rates affect community structure. I will also 

investigate the impact of the frequency and size distribution of disturbance events on 

model behavior. Finally, I will compare predictions of the mechanistic CA with the 

non-mechanistic models in order to determine which method better characterizes the 

dynamics of the rocky subtidal community. 
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